
BE/APh 161: Physical Biology of the Cell, Winter 2014
Short primer on linear stability analysis

Linear stability analysis is a convenient tool to assess the stability of a fixed point of a system of
ODEs. Consider such a system,

du

dt
= f(u), (1)

where u is a vector of variables, with f(u) being a vector-valued function. Let u0 be a fixed point of
the system. I.e.,

f(u0) = 0. (2)

No, let us perform a Taylor expansion of f(u) about the fixed point u = u0. We assume f(u) is
smooth around u0.

f(u) = f(u0) +∇f(u0) · δu + higher order terms (3)

where δu ≡ u− u0. Note that ∇f(u0) is the vector gradient of f(u) evaluated at u0, since f(u) is a
vector-valued function. This means ∇f(u0) is a matrix of derivatives. We will call this matrix A.

A ≡ ∇f(u0), (4)

Aij =
∂fi
∂uj

. (5)

Inserting this back into our original set of ODEs (1) and keeping only terms to linear order in the
perturbation δu yields

du0

dt
+

dδu

dt
= f(u0) + A · δu. (6)

Using the fact that

du0

dt
= f(u0) = 0 (7)

by the definition of a fixed point, we have

dδu

dt
= A · δu, (8)

which is a linear system of ODEs. This process of taking the Taylor expansion of f(u) to linear order
to get a system of linear ODEs is called linearization.

If the real part of all of the eigenvalues of A are negative, any perturbation from the fixed point
will relax back to the fixed point. If this is the case, the fixed point is stable. If, however, one or
more of the eigenvalues of A has a positive real part, any perturbation away from the fixed point will
grow exponentially away from the fixed point. When this is the case, the fixed point is unstable. To
summarize the stability of a fixed point based on the eigenvalues λ of A,

the fixed point u0 is

{
stable if Re[λ] < 0 for all λ

unstable if Re[λ] > 0 for any λ
(9)
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If the fixed point is permanent (meaning it is not created or destroyed), and changing a parameter
moves the system from being stable to being unstable, a transcritical bifurcation occurs as the relevant
eigenvalues of A have a zero real part.

It is also worth noting that the fastest growing mode of an instability is that with the eigenvalue
with the largest real part. If the eigenvalue of the fastest growing mode also has an imaginary part,
the instability is oscillatory.

Example: Genetic switch from lecture. In lecture, we considered a genetic switch. The dimensionless
ODEs we wrote down were

du

dt
= −u+

α

(1 + v)2
(10)

dv

dt
= −v +

α

(1 + u)2
, (11)

and we determined that u = v = α/(1 + v)2 is a fixed point. We will call this fixed point (u0, v0) and
assess its stability. To be explicit in the calculation of A, we have

A11 =
∂

∂u

(
−u+

α

(1 + v)2

)∣∣∣∣
u,v=u0,v0

= −1 (12)

A12 =
∂

∂v

(
−u+

α

(1 + v)2

)∣∣∣∣
u,v=u0,v0

= − 2α

(1 + v0)3
(13)

A21 =
∂

∂u

(
−v +

α

(1 + u)2

)∣∣∣∣
u,v=u0,v0

= − 2α

(1 + u0)3
(14)

A11 =
∂

∂v

(
−v +

α

(1 + u)2

)∣∣∣∣
u,v=u0,v0

= −1 (15)

Thus, we have

d

dt

(
δu
δv

)
=

(
−1 − 2α

(1+u0)3

− 2α
(1+u0)3

−1

)
·
(
δu
δv

)
, (16)

where we have used the fact that u0 = v0. The eigenvalues of A are

λ = −1± 2α

(1 + u0)3
= −1± 2

u0
1 + u0

. (17)

Thus, the fixed point is stable for α = u0(1 + u0)
2 such that

u0
1 + u0

<
1

2
, (18)

and unstable otherwise. The eigenvalues have no imaginary parts, so the instability will not be
oscillatory. A transcritical bifurcation occurs when

u0
1 + u0

=
1

2
, (19)

or u0 = 1, which gives α = u0(1 + u0)
2 = 4.
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