
BE/APh 161: Physical Biology of the Cell, Winter 2014
Handout: storage and loss moduli of a Maxwell material

In this handout, we show the calculation for the storage and loss moduli of a Maxwell material. Recall that
the constitutive relation for a Maxwell material is

σ + τM σ̇ = ηε̇, (1)

where τM = η/E is the Maxwell time. When we impose a stress of

σ(t) = σ0 sinωt, (2)

we measure the strain ε(t) as

ε(t) = ε0 sin(ωt− δ), (3)

where ε0 is the amplitude of the strain and δ is the phase shift between the applied stress and the resultant
strain. The storage and loss moduli are respectively defined as

E′ ≡ σ0
ε0

cos δ (4)

E′′ ≡ σ0
ε0

sin δ. (5)

These are sometimes also known as the elastic and viscous moduli, respectively, and are sometimes denoted G′

and G′′.

To compute E′ and E′′ as a function of E and η, we insert the imposed stress (2) into the constitutive
relation (1). The result is

σ0(sinωt+ τMω cosωt) = ηε̇. (6)

We rearrange this to get

ε̇ =
σ0
η

(sinωt+ τMω cosωt). (7)

This equation is integrated to give

ε(t) = σ0

(
−cosωt

ηω
+

sinωt

E

)
+ C, (8)

were C is a constant of integration. Since ε = 0 when σ0 = 0 (we have no strain in the absence of stress), C = 0,
giving

ε(t) = σ0

(
−cosωt

ηω
+

sinωt

E

)
. (9)

As an aside, we can rewrite (9) as

Eε(t) = σ0

(
−cosωt

τMω
+ sinωt

)
. (10)

Note that if τM � ω−1, the first term in the parentheses is tiny compared to the second, and

Eε ≈ σ0 sinωt = σ(t), (11)
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the constitutive relation for a purely elastic solid. If τM � ω−1, the second term is tine compared to the first,
and

Eε ≈ − σ0
τMω

cosωt ⇒ ε̇ =
σ0
η

sinωt =
σ

η
, (12)

the constitutive relation for a purely viscous fluid. So, we indeed have the expected limiting behavior and high
and low frequencies.

Now, we can rewrite (9) using the trigonometric identity

a cosx+ b sinx =
√
a2 + b2 sin(x+ δ), (13)

with

δ = tan−1
a

b
. (14)

We get

ε(t) =

(
σ2
0

(ηω)2
+
σ2
0

E2

) 1
2

sin(ωt− δ), (15)

with

tan δ =
E

ηω
=

1

τMω
. (16)

From these expressions, we identify the strain amplitude as

ε0 = σ0

(
1

(ηω)2
+

1

E2

) 1
2

=
σ0
E

(
1 +

(
E

ηω

)2
) 1

2

=
σ0
E

(
1 + tan2 δ

) 1
2 . (17)

We now make use of another trigonometric identity,

tanx = ±
√

sec2 x− 1. (18)

Using this identity, we get

ε0 =
σ0
E

(
sec2 δ

) 1
2 =

σ0
E cos δ

. (19)

From this expression, we have

cos δ =
σ0
Eε0

. (20)

Thus,

E′ ≡ σ0
ε0

cos δ =
σ2
0

Eε20
. (21)

But from (17), we have

ε0 = σ0

(
1

(ηω)2
+

1

E2

) 1
2

. (22)

Inserting this expression into our equation for E′ yields

E′ =
1

E

(
1

(ηω)2
+

1

E2

)−1
=

1

E

(
E2 + (ηω)2

E2(ηω)2

)−1
=

E(ηω)2

E2 + (ηω)2
. (23)
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We have thus identified the storage modulus E′.

We take a similar approach to find E′′. We revisit (17) and express it in a different way.

ε0 = σ0

(
1

(ηω)2
+

1

E2

) 1
2

=
σ0
ηω

(
1 +

(ηω
E

)2) 1
2

=
σ0
ηω

(
1 +

1

tan2 δ

) 1
2

. (24)

We use the trigonometric identity

cotx = ±
√

csc2 x− 1 (25)

to get

ε0 =
σ0
ηω

(
csc2 δ

) 1
2 =

σ0
ηω sin δ

⇒ sin δ =
σ0
ηωε0

. (26)

We can now proceed to compute the loss modulus.

E′′ ≡ σ0
ε0

sin δ =
σ2
0

ε20ηω
=

1

ηω

(
1

(ηω)2
+

1

E2

)−1
=

E2ηω

E2 + (ηω)2
. (27)

So, in summary,

E′ =
E(ηω)2

E2 + (ηω)2
= E

(τMω)2

1 + (τMω)2
, (28)

E′′ =
E2ηω

E2 + (ηω)2
= E

τMω

1 + (τMω)2
. (29)

A plot of the storage and loss moduli is shown in Figure 1.
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Figure 1: Storage and loss moduli for a Maxwell material. Note that limω→∞E
′′ = 0, though the asymptote

is not reached in this plot. Viscous damping is therefore present even at time scales an order of magnitude
smaller than the Maxwell time. Notice that the storage and loss moduli are equal when omega−1 = τM .
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