
BE/APh 161: Physical Biology of the Cell, Winter 2014
Homework #2

Due at the start of lecture, 1PM, January 22, 2014.

Note from JB: For the dimensional analysis problems, it might help to have a table of physical
quantities and their dimensions. I put one on the website for you here:
http://beaph161.caltech.edu/2014/handouts/physical_quantities_and_their_dimensions.pdf.

Problem 2.1 (Comments on Cell Biology by the Numbers part 2, 10 pts).
As in the first homework, we again ask you to read a chapter of CBBTN and give us your thoughtful
comments. This time, please read chapter 5, pages 273–296, and send comments about two vignettes.
Remember to email your answers to me and the TAs and indicate whether you would like to be
anonymous when I send the comments to the book’s authors. Also, please either send your responses
as text in an email or as a PDF. Do not send MS Word documents.

Problem 2.2 (Magnetic particles and gravity, 20 pts).
In 1950, Francis Crick published work (Crick and Hughes, Exp. Cell Res., 1, 37–80, 1950) in which he
probed the properties of the cytoplasm of cells. He took cells from the frontal bone of an 11 or 12 day
old chick. He then allowed the cells to intake magnetic particles made out of iron by phagocytosis.
The particles have a characteristic size, a, of 2 and 10 µm. He then applied a magnetic field and
watched how the particles twisted and translated. If you remember your electromagnetism, you will
recall that for an applied magnetic field B, the translational force and torque acting on the particle
are respectively

F = m · ∇B (2.1)

τ = m×B, (2.2)

where m is the magnetic dipole moment, which is permanent and proportional to the volume of the
particle. I.e., m ∼ a3M, where a is the characteristic size of the particle and M is the pre-volume
magnetic dipole moment, set by the material properties of the particle.

a) Assume the cytoplasm is a viscous fluid. Justify why inertia can be neglected in this study.

b) In the text of the paper, Crick was concerned that gravity might affect his results. He therefore
did a test. He took a sample with cells that had iron particles in them, turned it on its side for
one or two days, and then investigated if the particles settled toward the bottom in the absence
of magnetism. The particles did not settle to any substantial degree. Use dimensional analysis
or other physical reasoning to estimate a lower bound on what the viscosity of the cytoplasm
had to be in order to observe this. (Hint : The density of the cytoplasm is irrelevant, as shown
in part (a), but the difference in density between the iron and cytoplasm, ∆ρ, is relevant, as
this is responsible for the (negative) buoyant force.) Does this result make sense? If not, do you
have an explanation?

c) From the experimental set up, the magnetic moment m and field B are known, as is the field
gradient, ∇B. Use dimensional analysis to derive a scaling relation for M ≡ |M|, δB ≡ |∇B|, a,
the translation speed of particle motion v, and the cytoplasmic viscosity η. In particular, how
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does the velocity of a particle for a given magnetic field vary with particle size? Remember,
these are scaling relations; you need not include multiplicative constants.

d) Derive a similar scaling relationship involving the observed angular velocity ω. How does ω
depend on the particle size, a?

e) Use dimensional analysis to show that if the cytoplasm is elastic (characterized by elastic modulus
E as opposed to viscosity η), that the force and torque cannot depend on the velocity or angular
velocity, respectively. Nonetheless, the particles will be displaced and rotated by application of
the magnetic field. Let’s say they are translated by a distance x. Use dimensional analysis to
derive a scaling relationship between the force F and the displacement x.

Problem 2.3 (Mathematizing a cartoon for ciliar growth, 8 pts).
In lecture, we mathematized a cartoon describing ciliar growth (Fig. 1). We wrote the following
equations

dc

dt
= −kc (2.3)

d`

dt
= kgc(x = `) (2.4)

x = vt, (2.5)

where c is the concentration of active growth factors in the cilium, k is the rate constant for dephos-
phorylation of the growth factor, ` is the length of the cilium, kg is the rate constant for growth at
the tip of the cilium, and v is the speed of the motors proteins. Note that in writing the mass action
expression for dephosphorylation of the growth factors, we have taken advantage of the fact that the
phosphatase concentration is constant throughout the cilium and absorbed it into the decay constant
k. We solved these equations to get

` =
v

k
ln

(
1 +

k kgc0
v

t

)
, (2.6)

where c0 is the concentration of active growth factor at the base of the cilium.

a) Compute the growth rate, d`/dt of the cilium as a function of time. Sketch the function. Be
sure your axes have the proper dimensionless growth rate and time.

b) Based on our expression for `, the cilium never stops growing, but it slows drastically. How
much time τ does it take to slow to one-tenth of the initial growth rate? How long is the cilium
at this time?

c) The results from part (b) may be thought of as the characteristic length and growth time of the
cilium. Derive scaling relations for these using dimensional analysis. I.e., find a characteristic
length ` and time τ from the parameters k, kg, c0, and v.
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quantitatively account for the spatial period 
and dynamics of the patterns.

Patterns generated by advection and 
diffusio n. When advection moves mate-
rial in one direction and diffusion tends to 
move the material in the opposite direction 
(down its concentration gradient), a new 
length scale emerges: λ = D/v (FIG. 2a). An 
example of this is the localization of myosin 
motor proteins at the tips of the stereocilia 
of hair cells (FIG. 2b), which is thought to be 
due to the combination of directed move-
ment of the motor along the actin filaments 
within the stereocilia (advection) and diffu-
sion that occurs when the motor detaches 
from the actin42. The stereocilia form the 
hair bundle, the mechanosensitive organelle 
of these cells, and proper stereocilial length, 
which is essential for hearing, is regulated 
by myosins43, although how exactly the 
motor localization controls length is still 
not understood.

Antenna mechanism. A particularly inter-
esting example of length determination 
takes place when the reaction involves the 
shortening of the polymer track on which 
active transport is occurring44,45. In this 
example, kinase-interacting protein 3 (Kip3) 
motors (which belong to the Kinesin-8 
family) bind randomly along the length of 
a microtubule at a rate ron per unit length 
of microtubule (proportional to the cyto-
plasmic Kip3 concentration); they move 
processively to the end of the microtubule 
and then remove a tubulin dimer before 
dissociating (FIG. 2c). This gives a depolym-
erization rate that depends on the micro-
tubule length: the longer the microtubule, 
the more motors land on it, the greater the 
flux of motors to the end and therefore the 
higher the rate of depoly merization. Thus, 
the microtubule acts as an antenna for 
motors. If the microtubule polymerization 
rate in the absence of motors (r+, which is 
proportional to the bulk tubulin concentra-
tion) is independent of length, and if the 
motor speed is much faster than the rate of 
microtubule growth due to polymerization, 
the characteristic length is λ = r+/ron (REF. 46) 
(FIG. 2d), which increases with the tubulin 
concentration and decreases with the motor 
concentration. The length is independent 
of the motor velocity, and only requires 
that the motors be fast enough to outpace 
growth and processive enough to reach the 
microtubule end.

This mechanism accounts for the role 
of Kinesin-8 in controlling the overall 
length of the mitotic spindle, as well as its 

role in centring the chromosomes in the 
metaphase spindle, which requires that the 
two half spindles (which span between the 
poles and the chromosomes) be the same 
length47–49. In this mechanism, the motor 
proteins act as molecular rulers that pace 
out the lengths of the microtubules; they 
then use depolymerizatio n as a readout of 
the length.

Patterns formed by advection and reaction. 
Patterns can also be generated by a combi-
nation of advection and reaction: the length 
scale is λ = v/k. Although no biological 
lengths are known to be regulated by such a 
mechanism, there are numerous candidates. 
For example, if motor proteins carry cargo 
molecules along the cytoskeletal filaments 
within cilia and microvilli, and the cargoes 

are inactivated over time, for example by 
phosphatases, then the deactivation of the 
cargoes could provide a length-dependent 
signal to the growing tip of the cilium or 
microvillus (FIG. 2e).

Patterns generated by viscosity and fric-
tion. Active material properties can also 
define length scales. Consider a viscoelastic 
materia l, such as a contractile tissue or the 
thin actomyosin cortex located under the 
plasma membrane of a cell. A gradient 
of motor activity in the material will cre-
ate an active stress gradient and lead to 
a velocity gradient; over long timescales, 
the material behaves as a viscous fluid. If 
there is friction with the surroundings, for 
example between the tissue and an adjacent 
rigid extracellular matrix or between the 
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Figure 1: A cartoon describing a possible mechanism for ciliar growth adapted from Howard, et
al., Nature Rev. Mol. Cell Biol., 12, 393–398. The text from the caption in the paper reads
as follows. “Schematic of an advectionreaction model, a hypothetical mechanism for the length
control of cilia and microvilli. Cargoes, for example growth factors, carried along cilia and microvilli
are inactivated over time by phosphatases, which may provide a length-dependent signal to the
growing tip.”

Problem 2.4 (Growth curves, based loosely on page 103 of PBoC2, 24 pts).
In chapter 3 of PBoC2, we considered growth curves of E. coli. The logistic equation is written as

dN

dt
= rN

(
1− N

K

)
, (2.7)

where N is the number of bacteria, r is the growth rate, and K is the carrying capacity, or the
maximum number of bacteria that can be present and still have growth. In the analysis in PBoC2,
the values of r and K were assumed to be constant. For bacteria growing in media, r and K could
also be functions of the the concentration of food in the media, which we will call F (N, t) (not to be
confused with f(N, t) in equation 3.10 in PBoC2 ).

Since we will be taking N as a continuous variable, and since F is a concentration, we can write
the logistic equation in terms of concentration of bacteria, c, by dividing the entire equation by the
volume V of the vessel containing the medium.

dc

dt
= rc

(
1− c

K ′

)
, (2.8)

where K ′ ≡ K/V . We will drop the prime henceforth for notational convenience.

a) Write down an expression for dF/dt. You should try to keep your expression simple. Give your
reasoning for how you chose this expression.

b) Sketch functional forms that you think are reasonable for r(F ) and K(F ). Again, try to keep
them simple.

c) Based on what you know about bacterial growth, give reasonable values of the parameters you
defined in your expressions for dF/dt, r(F ) and K(F ). Also give reasonable values for the initial
bacteria concentration, c0, and the initial food concentration, F0. Explain how you came up
with these values. Hint : Working through problem 2.5 of PBoC2 will help you.

3

http://beaph161.caltech.edu/2014/protected/articles/HowardNatRevMolCellBio2011.pdf
http://beaph161.caltech.edu/2014/protected/articles/HowardNatRevMolCellBio2011.pdf


d) Numerically solve the differential equations and plot the results. You can use whatever numerical
integration software you like. If you would like to use Python with NumPy/SciPy, it might help
to go through the tutorial found here:
http://beaph161.caltech.edu/2014/handouts/scipy_odeint_tutorial.tar.gz.

e) Explain the shape of the curves.

f) Comment on any enhancements you would propose to this model for bacterial growth.

Problem 2.5 (Boltzmann’s grave, 5 pts).
Boltzmann’s grave is in Zentralfriedhoff in Vienna, a beautiful cemetery that also contains the graves
of some of the world’s greatest composers, including Beethoven, Brahms, Schubert, Strauss, Ligeti,
and Falco. On Boltzmann’s impressive grave stone is inscribed the equation

S = k logW. (2.9)

Here, S is entropy, k is the Boltzmann constant, log refers to the natural logarithm, and W is the
number of microstates. In class, we derived the famous Boltzmann distribution by maximizing the
Shannon entropy, given that we knew an average energy of our system of interest. Derive the equation
on Boltzmann’s grave using the same technique. To do so, assume we do not know anything about
the energy of the system.
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