
BE/APh 161: Physical Biology of the Cell, Winter 2014
Homework #3

Due at the start of lecture, 1PM, January 29, 2014.

Problem 3.1 (Comments on Cell Biology by the Numbers part 3, 10 pts).
We continue in our reading in CBBTN . This time, please read chapter 2, pages 74–150, and send
comments about two vignettes. Remember to email your answers to me and the TAs and indicate
whether you would like to be anonymous when I send the comments to the book’s authors. Also,
please either send your responses as text in an email or as a PDF. Do not send MS Word documents.

Problem 3.2 (Ligand-receptor binding: practical calculations, loosely based on problem 6.4 of
PBoC2, 12 pts).
In lecture, we considered simple ligand-receptor binding. We considered a single receptor with many
ligands and found that the equilibrium probability of a receptor having a ligand bound to it is

pbound =
1

1 +Kd/cL
, (3.1)

where cL is the concentration of free ligand and Kd is the dissociation constant, expressed in the same
units as cL.

a) Show that the expression given in equation (3.1) holds even if we have many receptors. For
concreteness of notation, assume that the the total receptor concentration (including both bound
and unbound) is c0R, with c0L being similarly defined for ligands. You may take the law of mass
action,

Kd =
cLcR
cLR

, (3.2)

as given, though it may be derived from statistical mechanics.

b) As I mentioned in lecture, it is not always easy to measure cL. This is especially true when we
do binding experiments with purified proteins in a test tube, where we know c0L and c0R. Derive
an expression for pbound as a function of the total ligand concentration c0L, the total receptor
concentration, c0R, and the dissociation constant, Kd.

c) Show that in the limit of c0L � c0R,

pbound ≈
1

1 +Kd/c
0
L

. (3.3)

Problem 3.3 (Cooperative ligand-receptor binding, 25 pts).
We continue to explore ligand-receptor binding in this problem. We consider the case where we have
a receptor that has two distinct binding pockets for ligands. We will refer to the binding pockets as
the left and right binding pockets. Each binding pocket can bind a single ligand, and the receptor
may have either zero, one, or two ligands bound at each time. We call the compound where the left
binding pocket is bound LR, the compound where the right is bound RL, and the compound where
both are bound LRL. So, written as chemical reactions with dissociation constants, we have

LR 
 L + R, Kd,1 (3.4)
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RL 
 R + L, Kd,2 (3.5)

LRL 
 L + RL, Kd,3 (3.6)

LRL 
 LR + L, Kd,4. (3.7)

a) Show that by the law of mass action, Kd,4 = Kd,2Kd,3/Kd,1.

b) Consider a single receptor in a solution of ligands with concentration cL. Write down a states
and weights table.

c) Use your states and weights table to derive an expression for the probability that both binding
pockets are occupied by ligands (pLRL) in terms of the ligand concentration cL and Kd,1, Kd,2,
and Kd,3. Be sure to explicitly write how the dissociation constants depend on the energies of
the respective states.

d) Assume Kd,1 = Kd,2 ≡ Kd. Plot pLRL vs. cL/Kd for various values of Kd,3/Kd. If Kd,3 < Kd,
the binding is said to be cooperative, meaning that binding a second ligand is stronger once the
first ligand is bound. Use your plot to comment on the effect of cooperativity in this example.

e) Assume now that only a single chemical reaction is allowed.

LRL 
 R + L + L, (3.8)

with an equilibrium constant we will call K. This means that the receptor may have only zero
or two ligands bound to it. Write the states and weights diagram and derive an expression for
pLRL. Compare this result to your results in parts (c) and (d). What does this say about using
Hill functions to describe cooperative binding?

Problem 3.4 (Pulling DNA using a two-state model, 20 pts).
Later in the class, we will delve into polymer physics. In this problem, we will tap our toe in those
waters using a two-state model.

Recall from our discussion in lecture about the Liphardt, et al. paper that the early portion of
the force extension curve involved pulling the DNA tethers until they were taught. We will develop a
model to describe pulling a single segment of double-stranded DNA. We model the DNA polymer as
a 1-D random walk, as described on page 341 of PBoC2. It consists of N segments, each of length a.
Each segment can either point right or left. We stretch the DNA segment by holding the left end and
pulling on the right end with force f . We take each segment to be independent of the others. We will
ignore end effects and consider the end segments to be the same as all others.

a) Write a states and weights diagram for a single segment of the polymer. Hint : Remember our
discussion in lecture about deriving the statistical weights for generic thermodynamic potentials.

b) From your states and weights diagram, derive the probability that a given segment points to the
right.

c) We want to find the probability that the end-to-end distance of a DNA segment under a force f
is L. It is easier to note that L = (2Nr−N)a, where Nr is the number of segments that point to
the right, and then find the probability of observing Nr. Write an expression for P (Nr). Your
expression from part (b) will be useful, and the binomial theorem may be useful as well.
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d) Show that

〈L〉 =
1

Z

∂Z

∂βf
, (3.9)

where Z is the partition function that appears in the denominator of P (Nr) that you derived in
part (c). Compute 〈L〉.

e) Compute the magnitude of the fluctuations in L. I.e., compute the variance σ2L = 〈L2〉 − 〈L〉2.
How does the ratio σL/〈L〉 depend on N?
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