
BE/APh 161: Physical Biology of the Cell, Winter 2014
Homework #6

Due at the start of lecture, 1PM, February 26, 2014.

Problem 6.1 (Comments on Cell Biology by the Numbers part 6, 10 pts).
We continue our reading of CBBTN . This time, please read chapter 6, pages 297–329, and send
comments about two vignettes. Remember to email your answers to me and the TAs and indicate
whether you would like to be anonymous when I send the comments to the book’s authors. Also,
please either send your responses as text in an email or as a PDF. Do not send MS Word documents.

Problem 6.2 (Swimming at low Re (based on PBoC2 problem 12.6(a)), 10 pts).
E. coli swims at about 20 µm/s by rotating a bundle of helical flagella. If the motors were to turn 10
times faster than normal, what would the swimming speed of E. coli be? If the fluid environment were
made 10 times more viscous, but the motors were to turn at the same rate, what would the swimming
speed be? How does the power output of the motor change in these two hypothetical situations?

Problem 6.3 (Microtubule buckling in a cell, 15 pts).
When we studied filament buckling, we found the critical force for buckling by writing the total energy
of a rod being compressed from the ends. The expression for the energy was a function of the radius of
curvature R of the bent configuration. We found the applied force was enough to buckle the filament
when the minimal energy occurred at finite R. In doing that calculation, we assumed that the rod
buckled in a simple arc. This is the lowest order buckling mode. A higher order mode would have a
sinusoidal looking shape.
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 unstable to very small forces (Dogterom et al., 2005; Deguchi 
et al., 2006). The structural role of microtubules in whole living 
cells thus remains highly controversial.

Despite the importance of understanding the forces asso-
ciated with the microtubule cytoskeleton for control of cell 
shape and mechanics, there have been very few studies that 
quantitatively measure these forces, and the precise physical ba-
sis of the microtubule bending seen throughout the cytoplasm 
remains unknown (Heidemann et al., 1999; Ingber et al., 2000). 
In this paper, we address the question of whether or not micro-
tubules bear large-scale compressive forces in living cells. Our 
results reveal that individual microtubules can and do bear lev-
els of compressive force that are one hundred times greater in 
whole cells than in vitro. This is possible because of lateral me-
chanical reinforcement by the surrounding elastic cytoskeleton. 
To illustrate this principle, we present a macroscale model com-
posed of a plastic rod embedded in an elastic gel, which mimics 
the short-wavelength curvature observed in microtubules in liv-
ing cells. We show that a reinforced buckling theory accounting 
for the surrounding elastic network can quantitatively predict 
the wavelengths of buckling induced by compression at both the 
macro- and microscales. This simple reinforcement principle, 
which appears to be widely used by nature to enhance the struc-
tural stability of cells, provides an explanation for how micro-
tubules can bear large compressive forces within the cytoskeleton 
of living cells.

Results
Buckling of microtubules polymerizing 
at the cell periphery
We fi rst explored whether microtubules bear large-scale com-
pressive loads in living cells by addressing the question of why 
cytoplasmic microtubules exhibit highly curved forms, whereas 
isolated microtubules undergo single long-wavelength Euler 
buckling. The Euler buckling instability observed in vitro with 
isolated microtubules occurs at a critical compression force 
given by
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(see supplemental discussion, available at http://www.jcb.org/
cgi/content/full/jcb.200601060/DC1), where κ is the bending 
rigidity and L is the length of the microtubule (Landau and 
 Lifshitz, 1986; Dogterom and Yurke, 1997). Within a cell, mi-
crotubules are typically even longer than those studied in vitro, 
suggesting that they should buckle easily under small loads of 
order 1 pN; forces larger than this can be generated by even a 
single kinesin or myosin motor protein (Gittes et al., 1996).

To investigate the response of microtubules to endogenous 
polymerization forces, Cos7 epithelial cells and bovine capil-
lary endothelial cells were either transfected with tubulin la-
beled with EGFP or microinjected with rhodaminated tubulin 
and then analyzed using real-time fl uorescence microscopy. 
The dynamic ends of growing microtubules that polymerized 
toward the edge of the cell consistently buckled when they 
hit the cell cortex (Fig. 1 and Videos 1 and 2, available at 

http://www.jcb.org/cgi/content/full/jcb.200601060/DC1), as 
observed in a previous study (Wang et al., 2001). Given the well 
defi ned (end-on) loading conditions that were visualized with 
this real-time imaging technique, these results strongly suggest 
that these particular microtubules are compressively loaded. 
These microtubules did not, however, exhibit the expected long-
wavelength Euler buckling, but, instead, consistently formed 
 multiple short-wavelength (λ ≈ 3 μm) arcs near the site of contact 
(Fig. 1 and Videos 1 and 2), which were similar to the micro-
tubule shapes that were previously observed in various different 
cell types (Kaech et al., 1996; Wang et al., 2001;  Gupton et al., 
2002; Schaefer et al., 2002).

Microtubule buckling induced by exogenous 
compressive forces
Short-wavelength buckling has not been reported in studies 
with isolated microtubules under compression (Dogterom and 
Yurke, 1997). Therefore, we directly tested whether compres-
sive forces are indeed the cause by imposing an exogenous 
compressive load on intracellular microtubules in living cells. 
To accomplish this, a glass microneedle controlled by a micro-
manipulator was used to compress the cell membrane and un-
derlying microtubules at the cell periphery, while simultaneously 
analyzing their structural response (Fig. 2 A). When initially 
straight microtubules that were aligned along the main axis of force 
application were compressed in this way, their proximal regions 
buckled with a short wavelength (2.8 ± 0.5 μm; mean ± SD) 
that was nearly identical to that naturally exhibited by the ends 
of growing microtubules (3.1 ± 0.6 μm; Fig. 2 B and  Videos 
3 and 4, available at http://www.jcb.org/cgi/content/full/
jcb.200601060/DC1). Therefore, we conclude that the short-
wavelength buckling of microtubules is indeed a mechanical 
 response to compressive loading caused by axial forces.

Microtubule buckling caused 
by actomyosin contractility
Short-wavelength buckling forms are also observed in micro-
tubules located deep within the cytoplasm of these same cells 

Figure 1. Structural dynamics of fl uorescently labeled microtubules 
in living cells. (A) Fluorescence micrograph of a Cos7 cell expressing 
EGFP-labeled microtubules that frequently display sinusoidal shapes 
 (arrowheads) at their ends, which is where they hit end-on at the cell 
periphery (white line indicates cell periphery). (B) Time sequence (left to 
right; 5 s between images) showing one microtubule from A at higher 
magnifi cation as it buckles into a sinusoidal shape when it hits the cell 
edge (Video 1). Bar, 5 μm. Video 1 is available at http://www.jcb.
org/cgi/content/full/jcb.200601060/DC1. 
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Figure 1: A) Depiction of EGFP-labeled microtubules pressing against a cell boundary in a Cos7
cell. B) Time sequence (5 seconds between images) of a microtubule polymerizing into the edge
of the cell and buckling. Scale bar, 5 µm. Figure from Brangwynne, et al., J. Cell. Biol., 173,
733–741, 2006.

a) Make an argument based on dimensional analysis why we would expect the lowest order mode
for buckling of a filament in solution.

b) Now imagine that the filament we are considering is embedded in an elastic meshwork, like
we might see in a cell. Experimentally (see Fig. 1), we observe small wavelength buckling of
microtubules as they press against the cell boundary. Use dimensional analysis and physical
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reasoning based on Figure 1 to estimate the critical buckling force and wavelength λ of the
buckling if a rod is embedded in an elastic meshwork that has Young’s modulus E.

c) Later in the course, we will find that E ≈ 1 kPa. Given that this is the case, predict the bending
wavelength of a microtubule and compare it to what is seen in Figure 1. Also compare the
critical bending forces for a microtubule 10 µm in length embedded in water vs. embedded in
the elastic meshwork of a cell.

Problem 6.4 (Flexural rigidity of biopolymers, adapted from problem 10.2 of PBoC2, 20 points).

a) Recall that the flexural rigidity of a filament is Keff = EI, where E is the Young’s modulus
and I is the geometric moment of inertia defined in lecture. We also saw that the persistence
length is given by ξp = EI/kBT . Given the persistence lengths of DNA, actin filaments, and
microtubules (check your lecture notes or BioNumbers), estimate their respective Young’s moduli
by computing the moment of inertia. You can look up geometric information about the filaments
in PBoC2 sections 2.2.3 and 10.5.1.
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Figure 4. Filopodial Markers Have Normal Distribution in Filopodia
Induced by CP Knockdown.

Knockdown B16F1 cells expressing pG-Super-T1 construct for four
days show numerous lateral filopodia (left column), dorsal filopodia
(middle column) and ventral stars (right column).
(A) Antibody staining reveals fascin along the length of filopodia.
(B) VASP (upper row) and actin (middle row) costaining reveals VASP
at the filopodial tips. Merged images of VASP and actin are shown
in bottom row. Boxed regions are enlarged in insets. Scale bars are
equal to 10 !m (left and middle columns) and 5 !m (right column).

analyses confirmed that the spikes and stars induced
by CP depletion were similar to filopodia.

Electron microscopy was carried out to evaluate the
phenotype of CP knockdown in B16F1 cells in more
detail. Low magnification views showed that control

Figure 5. Structural Organization of Filopodia in B16F1 Cellscells contained few filopodia that were restricted to the
(A and B) Control cells. Platinum replica EM shows few peripherallycell periphery (Figure 5A), whereas CP knockdown cells
located filopodia embedded into lamellipodial network. Deeper cy-showed abundant filopodial-like protrusions around the
toplasm shows sparser filament network.cell perimeter and on the dorsal surface (Figure 5C),
(C and D) CP knockdown cells. Abundant filopodia are apparent atwhich significantly varied in thickness and appeared both leading edge and dorsal surface. Deeper cytoplasm shows

emerging from the surrounding network. In addition, the dense filament network. High magnification images of control (B)
leading lamella of knockdown cells was filled with a and CP knockdown (D) filopodia show their similar structural organi-

zation. Enlarged image of boxed region in (C) shows that dorsaldense actin filament network, which contrasted with a
filopodium contains a bundle of parallel filaments. Scale bars arerather sparse lamella cytoskeleton in control cells and
equal to 5 !m (A, C) and 1 !m (B, D).suggested increased actin filament assembly away from

the leading edge after CP depletion. High resolution
analysis demonstrated that similar to normal filopodia Kinetic analysis was performed to determine the dy-

namics of induced filopodia and to evaluate the effect(Figure 5B), lateral (Figure 5D) and dorsal (inset in Figure
5C) protrusions in CP knockdown cells contained bun- of CP knockdown on the protrusion of the leading edge

(See Supplemental Movies S1 and S2 available at http://dles of long unbranched actin filaments that extended
almost the entire length of the bundle. Thus, EM data www.cell.com/cgi/content/full/118/3/363/DC1). Time

lapse movies of knockdown cells demonstrated thatare also consistent with the idea that CP knockdown-
induced genuine filopodia with proper structural organi- induced filopodia displayed normal dynamic features:

protrusive, retractile, and sweeping motility. Dorsal filo-zation.

Figure 2: A) Electron micrograph of a B16F1 cell with a few peripherally located filopodia. Scale
bar, 5 µm. B) A close-up of one of the filopodia. Scale bar, 1 µm. Image taken from Mejillano, et
al., Cell, 118, 363–373, 2004.

b) Filopodia are protrusions of bundled actin filaments often found in adherent cells. They push
against the cell membrane. The membrane pushes back on the filopodium with a force of

F = 2πrγ, (6.1)

where r is the radius of the end of the filopodium and γ is the surface tension of the membrane.
We will later discuss how to measure the surface tension of the membrane, but for now, we will
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take it to be γ ≈ 0.035 pN/nm. We will assume that the filopodium consists of approximately
30 filaments. We will now investigate how long the filopodium can protrude before it buckles,
considering two limits.

i) First, we assume that the filaments in the filopodium are not crosslinked. Find the length
L that the filopodium can protrude before buckling.

ii) Now, consider the limit where the filaments in the filopodium are very tightly crosslinked,
so tightly crosslinked that the filopodium can be considered a solid rod. Find the length
Lcl that the crosslinked filopodium can protrude before buckling.

iii) In general, what is Lcl/L as a function of N , the number of filaments in the filopodium?

Problem 6.5 (Polymerization as a force generator, 15 pts).
Imagine an actin filament is polymerizing against a compressive force. This might be the case if it
polymerizes against a membrane, which can deform but nonetheless provides a compressive force on
the filament.

a) Let Kd be the dissociation constant for binding an additional actin monomer to the end of an
actin filament, as defined in lecture. Let δ be the increased length of an actin filament as a result
of adding one monomer. Show that at equilibrium, the filament can exert a force of

Feq =
kBT

δ
ln

c1

Kd
, (6.2)

where c1 is the concentration of actin monomer. Estimate Feq for actin, given that cells typically
have c1 ≈ 20 µM. Hint : It might help to think about states and weights.

b) What is the maximal length of a filament such that it can polymerize against a compressive load
without buckling? Derive an analytical expression and then plug in numbers for actin.

c) Feq is the maximal force a filament can exert against a compressive load, as at equilibrium the
polymerization force balances the compressive load. Experimentally, it is often the case that
this force is never achieved, with polymerization essentially stalling at forces smaller than Feq.
Provide an intuitive explanation as to why this might be the case.
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