
BE/APh 161: Physical Biology of the Cell, Winter 2016
Homework #5

Due at the start of lecture, 1PM, February 17, 2016.

Problem 5.1 (The different meanings of the word cooperativity (10 pts)).
In class we talked about the fact that the word “cooperativity” is typically used in two different senses
in molecular biology. In one meaning, “cooperativity” is the value of a Hill coefficient. Another use
is related to the added energy of binding a second ligand after a first is bound. We have been calling
this energy J .

Consider cooperative binding of two repressors. A phenomenological Hill function for the fold
change in gene expression as a function of the total repressor concentration r is

fold change =
k2

k2 + r2
. (5.1)

Using the statistical thermodynamical approach as we have in class, write down an expression for fold
change under the weak promoter approximation. In what limit is this expression equivalent to the
phenomenological Hill function, (5.1)? What is the value of k in equation (5.1) in terms of the values
used in the expression derived from states and weights using statistical thermodynamics? Based on
this analysis, how are the two different definitions of cooperativity related, if at all?

Problem 5.2 (Transcriptional machinery in eukaryotes (40 pts)).
This is essentially problem 19.6 of PBoC2.
In the thermodynamic models of gene regulation we have discussed, the RNA polymerase is treated as a
single molecular species. While this might be a reasonable assumption for transcription in prokaryotes,
in eukaryotes tens of different molecules need to come together in order to form the transcriptional
machinery. In this problem we will consider a simplified “eukaryotic” model for transcription where
a functioning polymerase is made out of two different subunits, X and Y, that come together at the
promoter. This is in a similar spirit as our analysis of “dimoglobin.”

a) Calculate the probability of finding the complex XY bound to the promoter in the case where
unit X binds to DNA and unit Y binds to X. In what limit can this be reduced to an effective
one-molecule problem such as in the bacterial case?

b) Calculate the fold-change in gene expression for simple repression using transcriptional machinery
such as that proposed in (a). Remember, by “simple repression” we mean that a single repressor
binds to the promotor region thereby precluding binding of any of the polymerase components.
Explore the weak promoter assumption in order to reduce the expression to that corresponding
to the bacterial case.

c) Repeat part (b) for the case where an activator can contact Y.

d) Repeat (a), (b), and (c) for a case where Y binds to a site on the DNA that is near the X-binding
site, and there is an interaction energy between X and Y.

Problem 5.3 (A simplified repressilator, 50 pts).
In this problem, we study a synthetic genetic circuit developed by Michael Elowitz and Stan Leibler
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called the repressilator. It is described in Elowitz and Leibler, Nature, 403, 335–338, 2000. The circuit
consists of three genes, lacI, tetR, and cI, that repress each other in a cyclic fashion. Another gene
with a tet-repressible promoter was fused to green fluorescent protein (GFP) for a readout. So, if tetR
has low copy numbers, we will see a large GFP signal and vice versa. A diagram of the repressive
interactions of the genes is shown in Figure 1. So notation does not get cumbersome, we will refer to
lacI as “1”, tetR as “2”, and cI as “3”. The copy number of protein i per cell is pi.

TetR

cI LacI
Figure 1: Schematic of the repressilator described in Elowitz and Leibler, Nature, 403, 335–338,
2000.

a) Give an intuitive explanation as to why the repressilator system can give rise to oscillatory gene
expression.

b) Write down a system of ODEs describing the time evolution of the pi’s. Ignore mRNA dynamics.
That is, write down ODEs similar to those we wrote in class for the synthetic genetic switch.
For the purposes of this problem, assume that the fold change in expression of a repressed gene
is given by a Hill function with Hill coefficient n.

c) Nondimensionalize these equations. As a simplifying assumption, take all phenomenological
coefficients of each protein to be the same. I.e., they all have the same degradation rate, they
all have the same basal production rate, etc. Your result should be of the form

dp1
dt

= −p1 +
β

1 + pn3
(5.2)

dp2
dt

= −p2 +
β

1 + pn1
(5.3)

dp3
dt

= −p3 +
β

1 + pn2
, (5.4)

where pi now has a constant absorbed into it.

d) Show that this system has a unique fixed point.

e) Use linear stability analysis to show derive the stability properties of the fixed point. Specifically,
show that

the fixed point is



stable for all β if n ≤ 2

stable if n > 2 and β <
n

2

(n
2
− 1
)−n+1

n

unstable if n > 2 and β >
n

2

(n
2
− 1
)−n+1

n
.

(5.5)
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From this result, what can you say about the role of cooperativity in the repressilator system?
Hint : In doing the linear stability analysis, it will help you to recall that there are three cube
roots of unity.
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f) Solve the repressilator system numerically for n = 3 and β = 3, β = 10, and β = 100. Plot and
comment on your results.

g) (5 pts extra credit) If you are feeling ambitious, build an interactive plot with sliders where you
can adjust n and β and look at the response of the repressilator. You can send the code for the
interactive plot to the course instructors via email.
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