
BE/APh 161: Physical Biology of the Cell, Winter 2016
Homework #7

Due at the start of lecture, 1PM, February 29, 2016.

Problem 7.1 (Genomes in cells, 10 pts).
In this problem we consider how genomes take up space in cells.

a) If your genome were a single strand of DNA, what would its approximate radius of gyration be
if it were free in solution? What implications does this have for the design of a cell?

b) Estimate the radius of gyration of the E. coli genome if it were not confined in a cell. How does
that compare to the size of an E. coli cell?

Problem 7.2 (The WLC in the stiff limit, 5 pts).
In class, we derived the mean squared end-to-end distance of a wormlike chain to be
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We showed that if L� ξp, 〈R2〉 ≈ 2Lξp. Show that in the stiff limit (L� ξp),
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Problem 7.3 (Viral packaging, 20 pts).
In this problem, we explore estimates of the energetics of viral packaging of φ29, which we introduced
in lecture.

a) (Based on problem 10.6 of PBoC2 ) Estimate the entropy penalty for packing the genome in the
viral capsid. You can assume that the entropy of the packed state is nearly zero, since it features
almost crystalline packaging. Compare this entropy contribution to the free energy (equal to the
entropy times the temperature) to the total bending free energy of packing given by equation
10.42 of PBoC2. Hint: In computing the entropy of the unpacked state, remember that each
configuration of the unpacked state has the same energy, since it is a flexible chain on the length
scale of the entire genome.

b) Compare the force required to pack the last bits of genome into the capsid as given by equation
10.43 of PBoC2 and by the experimental result of ≈ 50 pN discussed in lecture and in Figure
10.19(B) of PBoC2. What factors might account for any discrepancy you may notice? Make
sure you know how equation 10.43 of PBoC2 is derived.

Problem 7.4 (Flexural rigidity of biopolymers, adapted from problem 10.2 of PBoC2, 30 points).

a) Recall that the flexural rigidity of a filament is Keff = EI, where E is the Young’s modulus
and I is the geometric moment of inertia defined in lecture. We also saw that the persistence
length is given by ξp = EI/kBT . Given the persistence lengths of DNA, actin filaments, and
microtubules (check your lecture notes or BioNumbers), estimate their respective Young’s moduli
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by computing the moment of inertia. You can look up geometric information about the filaments
in PBoC2 sections 2.2.3 and 10.5.1.
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Figure 4. Filopodial Markers Have Normal Distribution in Filopodia
Induced by CP Knockdown.

Knockdown B16F1 cells expressing pG-Super-T1 construct for four
days show numerous lateral filopodia (left column), dorsal filopodia
(middle column) and ventral stars (right column).
(A) Antibody staining reveals fascin along the length of filopodia.
(B) VASP (upper row) and actin (middle row) costaining reveals VASP
at the filopodial tips. Merged images of VASP and actin are shown
in bottom row. Boxed regions are enlarged in insets. Scale bars are
equal to 10 !m (left and middle columns) and 5 !m (right column).

analyses confirmed that the spikes and stars induced
by CP depletion were similar to filopodia.

Electron microscopy was carried out to evaluate the
phenotype of CP knockdown in B16F1 cells in more
detail. Low magnification views showed that control

Figure 5. Structural Organization of Filopodia in B16F1 Cellscells contained few filopodia that were restricted to the
(A and B) Control cells. Platinum replica EM shows few peripherallycell periphery (Figure 5A), whereas CP knockdown cells
located filopodia embedded into lamellipodial network. Deeper cy-showed abundant filopodial-like protrusions around the
toplasm shows sparser filament network.cell perimeter and on the dorsal surface (Figure 5C),
(C and D) CP knockdown cells. Abundant filopodia are apparent atwhich significantly varied in thickness and appeared both leading edge and dorsal surface. Deeper cytoplasm shows

emerging from the surrounding network. In addition, the dense filament network. High magnification images of control (B)
leading lamella of knockdown cells was filled with a and CP knockdown (D) filopodia show their similar structural organi-

zation. Enlarged image of boxed region in (C) shows that dorsaldense actin filament network, which contrasted with a
filopodium contains a bundle of parallel filaments. Scale bars arerather sparse lamella cytoskeleton in control cells and
equal to 5 !m (A, C) and 1 !m (B, D).suggested increased actin filament assembly away from

the leading edge after CP depletion. High resolution
analysis demonstrated that similar to normal filopodia Kinetic analysis was performed to determine the dy-

namics of induced filopodia and to evaluate the effect(Figure 5B), lateral (Figure 5D) and dorsal (inset in Figure
5C) protrusions in CP knockdown cells contained bun- of CP knockdown on the protrusion of the leading edge

(See Supplemental Movies S1 and S2 available at http://dles of long unbranched actin filaments that extended
almost the entire length of the bundle. Thus, EM data www.cell.com/cgi/content/full/118/3/363/DC1). Time

lapse movies of knockdown cells demonstrated thatare also consistent with the idea that CP knockdown-
induced genuine filopodia with proper structural organi- induced filopodia displayed normal dynamic features:

protrusive, retractile, and sweeping motility. Dorsal filo-zation.

Figure 1: A) Electron micrograph of a B16F1 cell with a few peripherally located filopodia. Scale
bar, 5 µm. B) A close-up of one of the filopodia. Scale bar, 1 µm. Image taken from Mejillano, et
al., Cell, 118, 363–373, 2004.

b) Filopodia are protrusions of bundled actin filaments often found in adherent cells. They push
against the cell membrane. The membrane pushes back on the filopodium with a force of

F = 2πrγ, (7.3)

where r is the radius of the end of the filopodium and γ is the surface tension of the membrane.
Unfortunately, we do not have time this term to talk about membrae tensions, but for this
problem, we will take γ ≈ 0.035 pN/nm. We will assume that the filopodium consists of
approximately 30 filaments. We will now investigate how long the filopodium can protrude
before it buckles, considering two limits.

i) First, we assume that the filaments in the filopodium are not crosslinked. Find the length
L that the filopodium can protrude before buckling.

ii) Now, consider the limit where the filaments in the filopodium are very tightly crosslinked,
so tightly crosslinked that the filopodium can be considered a solid rod. Find the length
Lcl that the crosslinked filopodium can protrude before buckling.

iii) In general, what is Lcl/L as a function of N , the number of filaments in the filopodium?

Problem 7.5 (Polymerization as a force generator, 35 pts).
Imagine an actin filament is polymerizing against a compressive force. This might be the case if it
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polymerizes against a membrane, which can deform but nonetheless provides a compressive force on
the filament.

a) Let Kd be the dissociation constant for binding an additional actin monomer to the end of an
actin filament, as defined in lecture. Let δ be the increased length of an actin filament as a result
of adding one monomer. Show that at equilibrium, the filament can exert a force of

Feq =
kBT

δ
ln

c1

Kd
, (7.4)

where c1 is the concentration of actin monomer. Estimate Feq for actin, given that cells typically
have c1 ≈ 20 µM. Hint : It might help to think about states and weights.

b) What is the maximal length of a filament such that it can polymerize against a compressive load
without buckling? Derive an analytical expression and then plug in numbers for actin.

c) Feq is the maximal force a filament can exert against a compressive load, as at equilibrium the
polymerization force balances the compressive load. Experimentally, it is often the case that
this force is never achieved, with polymerization essentially stalling at forces smaller than Feq.
Provide an intuitive explanation as to why this might be the case.
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