BE/APh 161: Physical Biology of the Cell
Justin Bois
Caltech
Winter, 2016



3 Mathematizing cartoons

The word “model” in biology has many meanings. There are three main ones, so
far as I can tell.

Cartoons models. These models are the typical cartoons or qualitative verbal de-
scriptions we see in text books or in discussion sections of biological papers. They
are a sketch of what we think might be happening in a system of interest, but they do
not provide quantifiable predictions.

Physical models. These models give quantifiable predictions that must be true if
a hypothesis (which is often sketched as a cartoon) is true. Sometimes hard work and
deep thought are needed to generate quantitative predictions. This often requires
“mathematizing” the cartoon. This is how a physical model is derived from a cartoon.
Oftentimes when biological physicists refer to a “model,” they are talking about a
physical model.

Statistical models. A statistical model specifies how we expect measured data to
behave using the language of probability. Specifically, it describes how the measure-
ments are expected to vary from the physical model because of measurement noise
and other sources of variation.

In this class, we will be working mainly on physical models. The connection
of these models to their respective cartoons is of paramount importance. We often
think of biological systems in terms of the cartoons, and we need to understand what
parameters and what quantifiable measurements result from the cartoons. Perhaps
most importantly, we need to know what falsifiable hypotheses follow from a cartoon.

In this lecture, we will learn how to go from a cartoon to a physical model. The au-
thors of PBoC2 call this “mathematizing a cartoon.” We will do this mainly by exam-
ple, and you will get a chance to practice other examples in the homework throughout
the course.

There is a companion Jupyter notebook to this lecture that has the details of the
numerical calculations.

3.1 Flagellar growth and length control in Chlamydomonas reinhardtii

We will cut our physical modeling teeth on a beautiful system: the growth of flagella
in Chlamydomonas reinhardtii. Chlamydomonas has two flagella of the same length
that it uses to swim. These flagella are constructed from microtubules arranged in a
fascinating structure called an axoneme. The flagella are thought to be built
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Figure 1: A cartoon sketch of the balance point model. Motor proteins (Orange cir-
cles) transport tubulin (blue squares) and other necessary axoneme growth elements
to the distal tip of the flagellum. There is spontaneous disassembly at the tip. Figure
taken from Avasthi and Marshall, Differentiation, 83, S30-S42, 2012.

3.1.1  Our first try: a simple model

As a first try at modeling assembly, we assume the motors deliver tubulin to the tip
of the flagellum at a constant rate # and that the microtubules depolymerize from
the time at a constant rate @. Then, the length of the flagellum, measured in units of
number of added tubulin dimers is described by the differential equation

d¢
The solution to this differential equation is
Uty =Ly + (p— alt. (3.2)

This is obviously not the case, because the flagellum would grow without bound
(assuming f# > a. So, by mathematizing the model, we have immediately exposed a
certain model as unfeasible.
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3.1.2 Arefinement: the “balance point mode

Marshall and Rosenbaum (2001) proposed a refinement on our first simple model.
They noted that there are a constant number of motor proteins present in the flagel-



lum as it grows. So, the density of motors is greater early on in the growth (when it
is short) and more sparse later on (when it is long). We might estimate that the rate
of delivery of material to the tip of the microtubule is then proportional to the motor
density, p = Npr/{, where Mgt is constant. Now, the dynamics read

% — B/l a, (3.3)

where we have wrapped constants into the parameter f such that f « Mpr. Now,
we have a steady state length of #/a. Now, let’s look at this equation and see what
it tells us about microtubule growth.

It of often good practice, especially when doing a numerical solution, to nondi-
mensionalize the equations first. This limits the number of parameters we need to
vary. For the balance point model, we have two parameters, f and a, which have
units of length squared per time and length per time, respectively. We can then con-
struct characteristic length scale #/a and characteristic time scale f//a*. We then
define dimensionless length ¢ via ¢ = 3¢/ and dimensionless time 7 via t = %/ a?.
Substituting these expressions into the balance point model gives

d/

7= -1 (3.4)

Now, let’s consider some limits of the differential equation. In the long time
limit, as it approaches steady state, / — 1. We can expand the right hand side in
a Taylor series about ¢ = 1 to see how the growth rate approaches the steady state
length. To first order in ¢ — 1, we get

d/ .
& (3.5)

Thus, as we approach the steady state length,
1—(~e™, (3.6)

meaning that it approaches the asymptote exponentially.

The short-time limit is not really accessible here, since we cannot take a limit of
¢ — 0. Our physical model does not really allow this either, as this implies an infinite
density of the IFT particles.

Now, the solution to the differential equation results in either a transcendental
equation for x or use of the Lambert-W function. Either way, the solution is ugly
and not terribly informative. I am generally of the opinion that solving differential
equations is only useful if the solution provides some insight or enables that taking
of some limit. When all we can get is plot the solution, we are equally well-served by
solving the differential equation numerically.



3.1.3 The balance point model and experiment

Engel, Ludington, and Marshall (Engel, et al., J. Cell Biol., 187, 81-89, 2009) mea-
sured the growth of flagella after pH shock, which eliminates the flagella. I digitized
their result from Fig. 1 of that paper and performed a nonlinear regression using
the balance point model. The details of the calculation can be found in the compan-
ion Jupyter notebook to this lecture. The results are shown in Fig. 2 This provides
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Figure 2: Curve fit of the balance point model to the data digitized from the Engel, et
al., paper. The best fit parameters as @ = 0.23 pm/s and # = 2.74 pm?/s.

convincing evidence that the balance point model might be describing microtubule
growth dynamics.

3.1.4 Testing the balance point model

The balance point model, as we have formulated it, assumes each flagellum is inde-
pendent of all others. Therefore, if we sever one flagellum and watch it grow back,
the other flagellum should be unaffected under the model. Ludington and coworkers
devised a clever experiment in which they trapped individual Chlamydomonas cells
using a microfluidic device and then used a laser to sever one of the flagella (see Fig.
3).

Ludington and coworkers instead saw that the length of the non-severed micro-
tubule shrunk while the other grew, as show in Fig. 4 This means that the two are
not independent.
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Figure 3: A) Schematic of microfluidic device for trapping of individual Chlamy-
domonas cells. B) Trapped cells and laser ablation setup. Figure take from Ludington,
et al., Curr. Biol., 22, 2173-2179, 2012.
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Figure 4: B) Results from a single laser ablation-regrowth experiment. C) The re-
sponse of 20 cells who had flagella ablated simultaneously in the same microfluidic
chamber. Figure taken from Ludington, et al., Curr. Biol., 22, 2173-2179, 2012.

3.1.5 Updating the balance point model

There is clearly some connection between the two flagella. What might this connec-
tion be? One hypothesis is that the two flagella share a cytoplasmic pool of tubulin.
Specifically, let # be the number of axoneme components (which we’ll just call pre-
cursor for brevity) in the cytoplasm available for incorporation into the flagella. We
will again use units of pm for #. Then the amount of precursor that an IFT train
at the base of the flagellum can pick up is a function of #. This is expressed in the
cartoon in Fig. 5

We will now write down an updated balance point model for two flagella that
share the same (conserved) cytoplasmic pool of precursor. We use units of concen-
tration that are consistent with flagellar length. That is, concentrations are units of
pm per volume. Let ¢; and ¢, be the lengths of the respective microtubules. Let the
anterograde IFT train speed be », and the retrograde IFT train speed by »,. The time
it takes an IFT train to reach the tip is ¢;/v,, and the amount of time it takes the dis-
assembled particles to reach the base is ¢;/»,. We will approximate the rate of pickup
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Figure 5: An updated balance point model where the cytoplasm contains a pool of
axoneme components to be transported by motor proteins to the tip. Figure taken from
Chan and Marshall, Science, 337, 1186-1189, 2012.

of precursor at the base as a linear function of the train density and the cytoplasmic
concentration. (Remember that the density of transporters goes like 1//;.) Then, we
can write delayed differential equations describing the length of the flagella.

dgl . ﬂ(t — 61/7&;)
dt - ﬂ gl - a? (3'7)

d/, n(t — Ez/va) B

3 7 (3.8)

2

We can write a differential equation for removal and delivery from the cytoplasm.

d” — —fn ( ;) + 2a. (3.9)

Here, V' is the volume in which the precursor particles reside. (This may be the
entire, well mixed cell, or so pocket in the cytoplasm where the precursors are lo-
calized.) Note that here, § has a different meaning than before. Its units are now
pm/s. Note also that even though tubulin that is disassembled from the tip takes a
time /;/v, to return to the cytoplasm, there is no explicit time delay in the » dynamics
because this is a constant process.

We also have conservation of total flagellar material.
Mot — N + 61 + Ez. (3.10)

These equations allow us to compute the steady state. From the dynamics of ¢; and
0y, it is clear that ¢/, = ¢, = fin/a at steady state. Inserting this expression into the
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conservation law gives the steady state.

Aot
n= . 3.11
a+2p (31D

3.1.6 Nondimensionalization of the updated balance point model
To nondimensionalize, we need to choose units for ¢; and ¢,, which we’ll call ¢,

units for time, 7, and units for the cytoplasmic number of precursors, 7,. We define
0y = loly, €y = Lolay t = 72, and n = nyn. Then, the dynamical equations are

d/, _ Pyt n <i_ :;z?aa) _ar

— = — 12
dt 2 A by’ (312)
ng_ﬂnofh(}_%“gz) _ T (3.13)
dt 2 l, by’ '
dn pr _ . (1 1 ) 2at

& “ (2) 7Tz e (3.14)

To eliminate parameters, we choose 7 = ¢,/ and ¢y/ny = f/a = y. The dimen-
sionless equations then become

dt,  w(i— 0 /u)

T 7 -1, (3.15)
db _alt—G/u) (3.16)
dt 0,

1dn 1 1

—— = —n(t =+ = +2, 3.17

y dt ® (fl fz) (17

where we have defined # = »,/a. We see that the dynamical equations depend only
on two parameters: the ratio of pick-up rate of precursor to shedding rate from the
tip and the ratio of transport to the tip and shedding rate. To connect to real units, we
have to specify one of {y, 7y, or 7 in terms of a, /3, ., and »,, the physical parameters
of the system. We could specify ny = my, giving lo = yne and 7 = P/ %
We note that we always have to make sure that we set initial conditions such that
# + y(; + {;) < 1to obey conservation of mass. Any difference of this sum from
unity is indicative of precursor material that is in transit in the flagellum, so this sum
should be close to unity.
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3.1.7 Adjusted balance point model and experiments.

We can again fit the adjusted balance point model to growth data from the pH shock
experiment. The result is shown in Fig. 6. We again have good agreement with the
growth curve.
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Figure 6: Fit of growth from the pH shock experiment using the adjusted balance
point model. The best fit parameters are @ = 0.073 pm/min, f = 0.083 pm/min,
Mot = 37.63 pm, and /2 = () = 1.74 pm.

We now will use these parameters to inform a severing experiment. We start
with one filament being the steady state length from the pH shock experiment. We
assume that the material that was in the severed flagellum is gone, so that the only
precursor available is that which was in the non-severed flagellum and in the cyto-
plasm. We then numerically solve for the dynamics. The result is shown in Fig. 7.
We see the main feature of shrinkage of the intact microtubule while the severed one
grows is captured in this model. However, the time scale is too long. This is possibly
due to that fact that the parameters were obtained from fitting the pH shock exper-
iment, which has different conditions. We also do not capture the regrowth of the
two flagella together that was observed in the experiment. This implies that the cell
is making more precursor, which we may want to include in a refinement. This also
raises the question of how the cell senses and controls the total amount of tubulin it
produces.
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Figure 7: Numerical calculation of severing experiment. The red line shows the length
of the severed flagellum and the blue the intact flagellum.
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