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4 Introduction to statisticalmechanics: ligand-receptor bind-
ing

In the last lecture, we explored how to mathematize cartoons, mostly where the un-
derlying physics could be described with mass action kinetics. Today, we will learn
how to mathematize cartoons where the physical principles involved rest on statis-
tical mechanics. We will have in mind an example, ligand receptor binding, as we
do this.

4.1 Motivation: ligand-receptor binding

A cartoon for ligand-receptor binding is shown in Fig. 8. We are interested in com-
puting the probability that a given receptor is bound with a ligand. We will call this
pbound. We model the receptor as fixed, in a sea of solvent and ligand. Either one or
zero ligands may be bound to the receptor at any given time.
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Figure 6.1: Simple model of ligand–receptor binding. The solution is treated
using a “lattice model” in which the positions that can be occupied by ligands
are dictated by a discrete set of lattice sites. The microstates of the system
correspond to the di↵erent ways of arranging the L ligands among the di↵erent
lattice sites. The first three microstates correspond to an unoccupied receptor
and microstate 4 has the receptor occupied leaving L� 1 ligands in solution.
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Figure 8: A schematic for ligand-receptor binding. At left, we have a single receptor
(in green) and many ligands. Each square in the grid can either be occupied by a ligand
or a solvent molecule. In this image, the receptor does not have a ligand bound to it.
In the right image, a ligand is bound to the receptor. Figure adapted from Fig. 6.1 of
PBoC2.

We define a “state,” or “microstate,” of this system by the configuration of the
L ligands among the N available spaces on the grid. Some of these states have the
receptor bound. In this case, there areL−1 receptors free tomove about the available
spaces out in the solvent.

The probability of the receptor being bound is

pbound =

∑
i∈states with bound receptor pi∑

i∈all states
. (4.1)

So, in order to compute pbound, we need to compute pi for a given state. This is where
statistical mechanics comes in.
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4.2 Derivation of the Boltzmann distribution

We will develop an expression for pi more generally. We will consider an arbitrary
system that has a discrete set of states indexed by i that have an energy, Ei associated
with them. Wewill take an approach along the lines of section 6.1.2 of PBoC2, which
is a bit unconventional for statistical physics textbooks. We will maximize informa-
tional entropy in our treatment, following E. T. Jaynes, Phys. Rev., 106, 620–630,
1957. The abstract of that paper very cleanly and clearly captures the notion of what
we are trying to do here.

Information theory provides a constructive criterion for setting up prob-
ability distributions on the basis of partial knowledge, and leads to a type
of statistical inference which is called the maximum-entropy estimate.
It is the least biased estimate possible on the given information; i.e., it
is maximally noncommittal with regard to missing information. If one
considers statistical mechanics as a form of statistical inference rather
than as a physical theory, it is found that the usual computational rules,
starting with the determination of the partition function, are an imme-
diate consequence of the maximum-entropy principle. In the resulting
“subjective statistical mechanics,” the usual rules are thus justified in-
dependently of any physical argument, and in particular independently
of experimental verification; whether or not the results agree with ex-
periment, they still represent the best estimates that could have been
made on the basis of the information available.

It is concluded that statistical mechanics need not be regarded as a phys-
ical theory dependent for its validity on the truth of additional assump-
tions not contained in the laws of mechanics (such as ergodicity, metric
transitivity, equal a priori probabilities, etc.). Furthermore, it is possi-
ble tomaintain a sharp distinction between its physical and statistical as-
pects. The former consists only of the correct enumeration of the states
of a system and their properties; the latter is a straightforward example
of statistical inference.

4.2.1 The Shannon entropy

The problem of specifying pi is really open-ended. As Jaynes suggested, we can use
maximum-entropy principles to derive an expression for pi. Here, the entropy is the
Shannon entropy, named after Claude Shannon, who published its mathematical
form in 1948, also known as the informational entropy. I will state the definition of
the entropy associated with a discrete probability distribution, and then give a short
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discussion on what it means intuitively.

S = −K
∑

i

pi ln pi, (4.2)

whereK is an arbitrary positive constant. It is understood that all pi’s are nonnegative
and that pi ln pi → 0 as pi tends toward zero.

We can think of entropy as ameasure of ignorance, or of unbiasedness. For exam-
ple, an unbiased coin will give heads in half of the flips, so the probability of getting
heads is ph = 1/2. We can choose K such that

S = −
∑

i

pi log2 pi = −ph log2 ph − (1− ph) log2(1− ph). (4.3)

So, if ph = 1, S = 1 bit, where a “bit” is the unit of entropy when we have chosen K
as we have. Now, let’s say ph = (1+ )/2, where ∈ [−1, 1]. Now, we have

S = −1+
2

log2
1+
2

− 1−
2

log2
1−
2

= − 1
2

log2
(1+ )(1− )

4
−

2
log2

1+
1−

= 1− log2(1−
2)−

2
log2

1+
1−

= 1− log2(1−
2)− | |

2
log2

1+ | |
1− | | . (4.4)

Looking at the three terms, we have a constant plus two monotonically decreasing
functions of | |. Further, if | | = 1, we get S = 0. So, the maximal entropy is when
, the bias of the coin, is zero. The entropy is minimal when | | = 1, which means

that we know the outcome of the coin toss ahead of time.

Now, image that instead of flipping a fair coin (which has two sizes), we roll a fair
8-sided die. The entropy associated with the probability distribution for the die is

S = −
∑

i

pi log2 pi = 3 bits. (4.5)

So, the entropy for a fair 8-sided die is greater than that of a fair coin. This makes
sense; we are more ignorant as to the result we would expect from an 8-sided die
than from a two-sided coin.

It turns out that there is only one way to define entropy that satisfies a set of
desiderata, or desired qualities about entropy, our measure of ignorance, or unbi-
asedness. These desiderata are, loosely,
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1. The entropy is continuous in pi.

2. If all pi are equal, the entropy is monotonic in pi. (Thus, the probability distri-
bution describing the outcomes of a roll of a fair 8-sided die should have greater
entropy than that describing a fair coin flip.)

3. Arbitrary grouping of events does not change the entropy (the so-called com-
position law).

Shannonproved that the only function that has these properties is in fact the Shannon
entropy, equation 4.2.

4.2.2 The maximal entropy distribution

To be maximally unbiased, or to use only the information we have about a system to
infer pi, we must choose pi that maximizes the entropy. To do this, we differentiate
the entropy with respect to pi and set the derivative equal to zero.

∂S
∂pj

= −K
∂

∂pj

∑

i

pi ln pi = K(1+ ln pj) = 0 ⇒ pj = e−1. (4.6)

I put this equation in gray because this is not what we should do! Clearly this cannot
be right, since the probability distribution is not normalized, i.e.,

∑
i pi ̸= 1.

So, we need to do a constrained maximization. Specifically, we need to impose the
constraint that

∑
i pi = 1, as is always the case, and further that pi has a well-defined

expectation value for the energy,

⟨E⟩ =
∑

i

piEi. (4.7)

To impose the constraints in the maximization problem, we use the method of La-
grangemultipliers, which is described on pages 254–255 in PBoC2. The idea is that
we add zero to S(pi), where the “zero” we add is defined by the constraints, with a
multiplier and then minimize that function over pi and the multipliers. We call this
function the Lagrangian.

L(pi, , ) = S +

(
1−

∑

i

pi

)
+

(
⟨E⟩ −

∑

i

piEi

)

= −K
∑

i

pi ln pi +

(
1−

∑

i

pi

)
+

(
⟨E⟩ −

∑

i

piEi

)
(4.8)

where and are the Lagrange multipliers. Necessary conditions for pi, , to be
maximal is that

∂L
∂pj

= 0 ∀j, (4.9)
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∂L
∂

= 0, (4.10)

∂L
∂

= 0. (4.11)

The last two conditions justmean that the constraints are satisfied, since they reduce
to

1−
∑

i

pi = 0, (4.12)

⟨E⟩ −
∑

i

piEi = 0. (4.13)

Now, if the constraints are affine (meaning that their second derivative with respect
to pi vanishes, which they do) and the entropy is strictly concave (itsmatrix of second
derivatives, called the Hessian, is negative definite), then the necessary conditions
are sufficient for optimality. Entry jk of the Hessian is

∂2S
∂pi∂pj

= − jk

pj
, (4.14)

where jk is the Kronecker delta ( jk = 1 for j = k and 0 otherwise). This means that
theHessian is diagonal with negative entries, so it is negative definite. Therefore, we
need only to solve equations (4.9) through (4.11) to determine themaximum entropy
probability distribution, pi.

Now, wewill findwhere the derivative of the Lagrangianwith respect to pj is zero.

∂L
∂pj

= K(1+ ln pj)− − Ej = 0. (4.15)

Solving for pj gives

pj = e− e− Ej , (4.16)

where we have absorbed constants such that−1− /K → and /K → . Now,
using the normalization constraint, we have

∑

i

pi = e−
∑

i

e− Ei = 1, (4.17)

so

e =
∑

i

e− Ei ≡ , (4.18)

where we have defined the partition function Z. The second constraint, ⟨E⟩ =∑
i piEi is automatically satisfied by definition, so we have arrived at our maximum

entropy probability distribution. It is an exponential distribution.

pi =
e− Ei

. (4.19)
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4.2.3 Connection to thermodynamics

Whilewe have derived an expression for pi, we still do not know the physicalmeaning
of the Lagrange multiplier . We know only that it must have dimensions of inverse
energy, since Ei must be dimensionless. To connect to physical quantities, we
turn to thermodynamics. Thermodynamics deals with observed quantities in large
systems. The internal energy is ⟨E⟩. We can write the combined first and second law
of thermodynamics as

dS =
1
T
d⟨E⟩. (4.20)

Then,

∂S
∂⟨E⟩ =

1
T
. (4.21)

To compute the derivative of the entropy, we first write it in a more convenient
form using our derived expression for pi.

S = −K
∑

i

pi ln pi = −K
∑

i

(
e− Ei

Z
− (lnZ + Ei)

)
= K lnZ + K ⟨E⟩.

(4.22)

Thus, we have

∂S
∂⟨E⟩ = K =

1
T
. (4.23)

So, for the Shannon entropy to be equal to the thermodynamic entropy, K = 1/T.
Thus, = 1/KT. Whenwe have equivalence to the thermodynamic entropy, we call
the constant K the Boltzmann constant, and denote it as kB or k. We will also just
use ≡ 1/kBT in our calculations, since it turns out to be notationally convenient.
Thus, we have

pi =
e−Ei/kBT
∑

i e−Ei/kBT
. (4.24)

4.3 Back to ligand-receptor binding

We can now return to our ligand-receptor binding problem. We know the probability
of each state, pi, and we just need to assign energies to them to compute pbound. Let
the energy of a single unbound ligand be Eu and the energy of a bound ligand be Eb.
Then the total energy of any state where the receptor is unbound is LEu, where, as
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a reminder, L is the total number of ligands. The total energy of any state where the
receptor is bound is Eb + (L − 1)Eu. Then the total statistical weight of all unbound
states is equal to the number of states with unbound receptor times the Boltzmann
weight of an unbound state, e− Eu .

We can compute the number of states with unbound ligand. The number of ways
select L our of N lattice sites to be occupied by ligand is given by the binomial coef-
ficient, N!/(N − L)!L!. This is themultiplicity of the bound state; i.e., the number
of states with the same energy.

It helps to organize everything into a states and weights table.

state energy multiplicity statistical weight

receptor unbound LEu
N!

(N−L)!L!
N!

(N−L)!L! e
− LEu

receptor bound Eb + (L − 1)Eu
N!

(N−L+1)!(L−1)!
N!

(N−L+1)!(L−1)! e
− (Eb+(L−1)Eu)

For ease of notation, we will denote the appropriate binomial coefficients as u

and b. Then, we can compute pbound as

pbound =
be− (Eb+(L−1)Eu)

be− (Eb+(L−1)Eu) + ue− LEu
=

b

u
e− (Eb−Eu)

1+ b

u
e− (Eb−Eu)

. (4.25)

Now,

b

u
=

N!

(N − L + 1)!(L − 1)!
(N − L)!L!

N!
=

L
N − L + 1

≈ L
N

≈ L
N + L

= xL,

(4.26)

where we have used the fact that L ≪ N, as is the case for a dilute solution and
defined the mole fraction of ligand xL. So,

pi =
xLe− (Eb−Eu)

1+ xLe− (Eb−Eu)
. (4.27)

Now, if we multiply top and bottom by H2O/ H2O, where H2O is the solvent den-
sity, we convert the mole fractions into concentrations and can define a dissociation
constant Kd = H2oe

− (Eu−Eb).

pbound =
cL/Kd

1+ cL/Kd
. (4.28)

This is a common result (called a Langmuir isotherm) that could be seen from
what you remember fromgeneral chemistry. Wecan take the probability of a receptor
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being bound as

pbound =
cLR

cLR + cR
. (4.29)

We use the definition of the dissociation constant,

Kd =
cLcR

cLR
, (4.30)

to get

pbound =
cLcR/Kd

cLcR/Kd + cR
=

cL/Kd

1+ cL/Kd
. (4.31)

In deriving this result, we have a clear picture about the physical origin of the dis-
sociation constant. We also have a framework to study cases where we have more
complicated states and weights.

4.4 Maximum entropy distributions for other ensembles

Wewill now use the method of maximum entropy to derive probability distributions
when we know other facts about the states.

4.4.1 Given energy and number of particles

Now let’s say that we have a system that consists of particles. Each state of the sys-
tem has a well defined energy, Ei and number of particles, Ni. Now, we have three
constraints for pi.

∑

i

pi = 1, (4.32)

⟨E⟩ =
∑

i

piEi, (4.33)

⟨N⟩ =
∑

i

piNi. (4.34)

We construct our Lagrangian as before, but with a third Lagrange multiplier.

L = −k
∑

i

pi ln pi +

(
1−

∑

i

pi

)
+

(
⟨E⟩ −

∑

i

piEi

)
+

(
⟨N⟩ −

∑

i

piNi

)
.

(4.35)
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We take the same approach as before.

∂L
∂pj

= −k(1+ ln pj)− − Ej − Nj = 0. (4.36)

Solving gives

pj = e− e− Ej− Nj , (4.37)

where we have again absorbed constants: −1− /k → , /k → , and /k → .
We use the normalization condition that

∑
i pi = 1 to get

e =
∑

i

e− Ej− Nj ≡ Z. (4.38)

To find the values of the other Lagrange multipliers that connect the entropy to the
thermodynamic entropy, we do the same procedure. We first write the combined
first and second law of thermodynamics.

dS =
1
T
d⟨E⟩ −

T
d⟨N⟩, (4.39)

where is the chemical potential of the particles. Thus,
(

∂S
∂⟨N⟩

)

E

= −
T
= k . (4.40)

Thus, we have = − /kT. We again get = 1/kT in a similar manner. Thus, we
have

pi =
e− (Ei− )

∑
i e− (Ei− )

. (4.41)

4.4.2 A general thermodynamic conjugate pair

We see a pattern here. Let’s say that a given state has associated with it an energy
Ei, and another arbitrary extensive property Xi with a well-defined expectation value
⟨X⟩. Then, the maximum entropy distribution is

pi =
e− Ei− Xi

Z , (4.42)

where

Z =
∑

i

e− Ei− Xi , (4.43)
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with being a Lagrangemultiplier. To link to a physical quantity, it always ends up
being the thermodynamic conjugate variable to ⟨X⟩divided by kT. We can havemany
such extensive properties. So, if we index these properties by k, we have, generally,

pi =
1
Z exp

{
− 1

kBT

(
Ei +

∑

k

ykXk

)}
, (4.44)

where yk denotes the thermodynamic conjugate variable to Xk and

Z =
∑

i

exp

{
− 1

kBT

(
Ei +

∑

k

ykXk

)}
. (4.45)

4.5 Another look at ligand-receptor binding

Let’s take another look at ligand-receptor binding using our new tools. We’ll reframe
how we look at the system. We focus on the receptor, knowing there is a pool of
ligands immediately around it. In the immediate vicinity of the receptor, there can
only be zero or one ligand. In the latter case, the ligand is bound. So, the number of
ligands in the system can fluctuate, so we can define each state to have an energy Ei

and a number of ligands, Li. If is the chemical potential of a ligand, then we have a
new states and weights table.

state energy multiplicity statistical weight

receptor unbound Eu 1 e− Eu

receptor bound Eb 1 e− (Eb− )

We can then readily compute pbound.

pbound =
e− (Eb− )

e− (Eb− ) + e− Eu
=

e− (Eb−Eu− )

1+ e− (Eb−Eu− )
. (4.46)

Now, as derived in section 6.2.2 of PBoC2 (we will not derive it here), for a dilute
solution, the chemical potential of solute species k is

k =
0
k + kBT ln xk. (4.47)

The chemical potential for the solvent is

solv =
0
solv − kBT

∑

k

xk. (4.48)
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If we insert the chemical potential for solute into our expression for pbound, we get

pbound =
xLe− (Eb−Eu− 0)

1+ xLe− (Eb−Eu− 0)
=

cL/Kd

1+ cL/Kd
=

cL

Kd + cL
, (4.49)

the same expression as before with

Kd = e− (Eu+ 0−Eb). (4.50)

Note that there is a subtle difference in the definition ofKd, which is due to the subtle
difference in the definition of the energies of the states. In our previous treatment,
we defined Eu to be the energy of a ligand when unbound. We tacitly assumed that
the energy of the receptor when unbound was zero. Here, Eu is the energy of the
receptor when unbound and 0 is the energy of a single ligand alone in solution.
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