BE/APh 161: Physical Biology of the Cell, Winter 2018
Homework #3
Due at the start of lecture, 2:30 PM, January 24, 2018.

In this homework, we will explore ligand-receptor binding in depth, using many
of the skills from statistical mechanics we learned last week. It may seem a bit re-
dundant, but this is a great model system to hone your skills.

But first, we’ll do a quick visit to some basics of statistical mechanics.

Problem 3.1 (Boltzmann’s grave, 5 pts).

Boltzmann’s tomb is in Zentralfriedhoff in Vienna, a beautiful cemetery that also
contains the graves of some of the world’s greatest composers, including Beethoven,
Brahms, Schubert, Strauss, Ligeti, and Falco. Boltzmann’s tomb is shown in Fig. 1.
Not the equations, S = klog W, at the top of the stone.
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Figure 1: Boltzmann’s tomb in Zentralfriedhoffin Vienna. Photo from Daderot,
licensed under CC-BY-SA-3.0.

Here, S is entropy, k is the Boltzmann constant, log refers to the natural loga-
rithm, and W is the number of microstates. In class on January 17, we derived the
famous Boltzmann distribution by maximizing the Shannon entropy, given that we
knew an average energy of our system of interest. Derive the equation on Boltz-
mann’s grave using the same technique. To do so, assume we do not know anything
about the energy of the system.

Problem 3.2 (Ligand-receptor binding: practical calculations, loosely based on prob-
lem 6.4 of PBoC2, 15 pts).


https://creativecommons.org/licenses/by-sa/3.0/deed.en

In lecture, we considered simple ligand-receptor binding. We considered a single

receptor with many ligands and found that the equilibrium probability of a receptor

having a ligand bound to it is
1

1+ Kd / CL ’

where ¢, is the concentration of free ligand and K| is the dissociation constant, ex-

pressed in the same units as | .

(3.1)

Pbound =

a) Show that the expression given in equation (3.1) holds even if we have many
receptors. For concreteness of notation, assume that the the tozal receptor
concentration (including both bound and unbound) is ¢, with ¢ being simi-
larly defined for ligands. You may take the law of mass action,

CcL.C
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as given, though it may be derived from statistical mechanics.

b) AsImentioned in lecture, itis not always easy to measure ¢y . This is especially
true when we do binding experiments with purified proteins in a test tube,
where we know ¢! and ¢}. Derive an expression for pyoung as a function of
the total ligand concentration ¢?, the total receptor concentration, %, and the
dissociation constant, K.

c¢) Show that in the limit of ¢ > ¢,
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Problem 3.3 (Cooperative ligand-receptor binding, 40 pts).

We continue to explore ligand-receptor binding in this problem. We consider the
case where we have a receptor that has two distinct binding pockets for ligands. We
will refer to the binding pockets as the left and right binding pockets. Each binding
pocket can bind a single ligand, and the receptor may have either zero, one, or two
ligands bound at each time. We call the compound where the left binding pocket is
bound LR, the compound where the right is bound RL, and the compound where
both are bound LRL. So, written as chemical reactions with dissociation constants,
we have

LR =L+R, Ky, (3.4)
RL=R+L, Ky (3.5)
LRL =L+RL, Kg; (3.6)
LRL = LR +L, Kug. (3.7)
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Show that by the law of mass action, K41 = K42K43/Kqa 1.

Consider a single receptor in a solution of ligands with concentration ¢ . Write
down a states and weights table.

Use your states and weights table to derive an expression for the probability
that both binding pockets are occupied by ligands (py r.) in terms of the ligand
concentration ¢, and Ky 1, Ky, and Ky 3. Be sure to explicitly write how the
dissociation constants depend on the energies of the respective states.

Assume Ky = K4, = K. Plot prgy vs. ¢ /K, for various values of K4 5/Kj.
If K43 < K4, the binding is said to be cooperative, meaning that binding a sec-
ond ligand is stronger once the first ligand is bound. Use your plot to comment
on the effect of cooperativity in this example.

Assume now that only a single chemical reaction is allowed.
LRL=R+L+L, (3.8)

with an equilibrium constant we will call K. This means that the receptor may
have only zero or two ligands bound to it. Write the states and weights diagram
and derive an expression for p; g; . Compare this result to your results in parts

(c) and (d).

Hill functions are commonly used to describe cooperative binding. A Hill
function for binding of 7 ligands to a receptor is of the form.
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PRL, = (3.9)

What does the analysis in this problem say about using Hill functions to de-
scribe cooperative binding?

Problem 3.4 (Ligand-receptor binding and small numbers of molecules, 40 pts).

In this problem, we will explore the effect of having small number of ligands and
receptors in a small volume, as is often the case in cells. Imagine we have a cell with
volume V. that contains L total ligands and R total receptors. (Of course here we
mean copies of specific ligand-receptor pair; cells have lots of ligands and receptors
of different type.) The receptors and ligands are all free to move about in the cell.
Each receptor can bind a single ligand. Let n be the number of receptors that are
bound to ligands.

Compute the expected number of bound receptors, 7, as a function of L, R,
and W = K V.. In doing the calculation, assume that R and L are large,
which enables you to use

CLCR

Ky = =R, (3.10)
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)
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W is a dimensionless number. What is its physical meaning?

When L and R are not large, just knowing the expected number of bound re-
ceptors is not enough to fully understand what the molecules are doing in our
system. We therefore would like to know P(n), the probability mass function
of n. Le., P(n) is the probability that there are n bound receptors at equilib-
rium. Show that

R
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n=0

(3.12)

Plot P(n) for various values of L, R, and W. Comment on what you see, es-
pecially for small L and R. By “small,” I mean between 1 and 100. (Are there
ligands and receptors with these sorts of copy numbers in cells?) Think care-
fully about how to represent your plot so that you can highlight the important
physical consequences of your analysis. Be sure to discuss your plots. Hinz: It
will be difficult to compute the statistical weights and the partition function.
Work with logarithms of the statistical weights when you can. If you are using
Python, scipy.special.gammaln() andscipy.misc.logsumexp()
might be useful functions.

The coefficient of variation is the ratio of the standard deviation of a distri-
bution to its mean. Plot the coefficient of variation of P(n) for W = 1000,
R going from 1 to 10°, and L = 2R. What does this say about variability in
number of of species? When can you just use your result from part (a), and
when should be think more carefully about the full distribution?



