
BE/APh 161: Physical Biology of the Cell, Winter 2018
Homework #6

Due at the start of lecture, 1PM, February 14, 2018.

Problem6.1 (Sedimentation, theEinstein-Smoluchowski equation, and theStokes-E-
instein-Sutherland relation, 40 pts).
In this problem, we will derive some landmark results in statistical physics, and learn
something about a technique for studying protein structure in the process.

In equilibrium sedimentation experiments, a tube of solution of a protein or pro-
tein complex of interest is placed in a centrifuge. The concentration of protein is
measured along the tube. The shape of this concentration profile is used to infer
information about the size and shape of the protein. For our analysis, let ω be the
angular velocity of the rotor of the centrifuge and r describe the distance from the
center of the rotor to a given position in the tube of solution. Let ρ H2O be the density
of the solvent and ρ p be the density of the protein. Note that ρ p/ρ H2O ≈ 1.4 (BNID
104272). Let a be the radius of gyration of the protein.

a) Due to its density being greater than water, the protein will tend to fall to-
ward the bottom of the tube with steady state velocity v. As it falls through
the solvent, it experiences a friction f, such that it experiences a drag force of
Fdrag = −fv. At steady state, the drag force balances the centrifugal force.
Use this fact to compute the velocity with which it falls in terms of ρ p, ρ H2O,
a, ω , r, and f. Hint: The centrifugal force is given by Fcentrifugal = me ω 2r,
where me is the effective mass of the protein.

b) Show that at steady state, the sedimentation velocity is given by

v = D d ln c(r)
dr , (6.1)

where D is the diffusion coefficient of the protein.

c) Now use equilibrium statistical mechanics to derive an expression for the con-
centration profile of the protein. I.e., compute c(r) as a function of kBT and
the other variables describing the system. Note that if P(r) is the probability
density for a given particle being at position r in the centrifuge, c(r) ∝ P(r).
Assume that in the absence of centrifugation, the solution has a uniform con-
centration of c0. Hint: In part (a), you used an expression for the centrifugal
force. Recall that a force F(r) acting on a particle in a potential U(r) is given
by F(r) = −dU(r)/dr.

d) Use your expressions from parts (b) and (c) to derive an expression for D
in terms of f. This is the Einstein-Smoluchowski equation, an example of a
fluctuation-dissipation theorem. It has this name because it relates equilib-
rium fluctuations to response to applied perturbations. This is a profound and
important concept in statistical physics.
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e) The friction f is given by Stokes’s law (applicable for spherical particles),

f = 6π ηa. (6.2)

This was derived by George Stokes by solving for fluid flow around a spherical
object. Insert this result into your result in part (d) to get the Stokes-Einstein-
Sutherland relation.

f ) The sedimentation coefficientS is the ratio of the sedimentation velocity to the
acceleration applied to it. It therefore has units of time. Derive an expression
for S.

g) Ribosomes are often named by their sedimentation coefficient. A typical unit
is a svedberg, which is equal to 10−13 s. The 70S ribosome has a sedimenta-
tion coefficient of approximately 70 svedbergs. Estimate the diameter of the
70S ribosome. Compare this estimate to what is reported on BioNumbers and
explain any discrepancies.

Problem 6.2 (Protein diffusion and temperature, 5 pts).
In what situationmight a protein diffusemore slowly as the temperature is increased?

Problem 6.3 (Diffusion along a polymer, 5 pts).
Someproteins, such as polymerases, diffuse alongDNAprior to finding their binding
sites. If a protein diffuses along DNA, its root mean square displacement along the
filament scales as

√
t. How does the root mean square displacement in space scale

with time?

Problem 6.4 (Effects of temperature on pulling polymers, 5 pts).
If I hold the ends of a flexible polymer at a fixed length from each other and then
raise the temperature, will it require more or less force to keep the ends at the same
distance from each other? Explain.

Problem 6.5 (Polymerase backtracks and random walks, 45 pts).
Sometimes RNA polymerase pauses and then backtracks, pushing the RNA tran-
script back out the front, as shown in Fig. 1., taken from Depken, et al., Biophys. J.,
96, 2189-2193, 2009.
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Figure 1: Schematic of RNA polymerase pausing from Depken, et al., Biophys.
J., 96, 2189-2193, 2009

To escape these backtracks, a cleavage enzyme called TFIIS cleaves the bit on
RNA hanging out of the front, and the RNAP can then go about its merry way.

Researchers have longdebatedhow these backtracks are governed. Singlemolecule
experiments can provide some much needed insight. The groups of Carlos Busta-
mante, Steve Block, and Stephan Grill, among others, have investigated the dynam-
ics of RNAP in the absence of TFIIS. They can measure many individual backtracks
and get statistics about how long the backtracks last.

Onehypothesis is that the backtracks simply consist of diffusive-likemotion along
the DNA stand. That is to say, the polymerase can move forward or backward along
the strand with equal probability once it is paused. This is a one-dimensional ran-
dom walk. So, if we want to test this hypothesis, we would want to know how much
time we should expect the RNAP to be in a backtrack so that we could compare to
experiment.

So, we seek the probability density function of backtrack times, f(tbt), where tbt is
the time spent in the backtrack. Wewill approach this problem in twoways. First, we
will use a continuumdiffusion approach to compute f(tbt). Then, wewill simulate the
random walks with a computer. In doing the calculations, note that Depken, et al.,
report that the time it takes to make a base-pair length step in the backtrack random
walk is τ ≈ 0.5 seconds.

a) First, we take a continuum approach.

i) In taking a continuum treatment of the backtrack random walk, we con-
sider the diffusion equation,

∂P(x; t)
∂t = D ∂2P(x; t)

∂x2 . (6.3)

What value should you use for the diffusion coefficient D where we take
x to be in units of base pairs of the DNA strand?

ii) Explainwhy the following choices for initial and boundary conditions are
appropriate for modeling the backtrack random walk,

P(x; 0) = δ (x + 1), (6.4)
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P(0; t) = 0, (6.5)

where δ (x) denotes the Dirac delta function evaluated at x. Note that
we define negative x positions of the polymerase as being in a backtrack.
We define P(x ≥ 0; t) = 0, since if x is not negative, the polymerase is
not in a backtrack. Recall also that we are taking the values of x to be in
units of base pairs.

iii) If you have taken a course in PDEs, solve for P(x; t). Otherwise, demon-
strate that

P(x; t) = 1√
4πDt

(
e−(x+1)2/4Dt − e−(x−1)2/4Dt

)
(6.6)

solves the PDE with the appropriate boundary conditions.
iv) Explain why the probability density function of the amount of time it

takes for the polymerase to exit a backtrack, f(tbt), is given by the flux at
x = 0. That is,

f(tbt) = −D ∂P(x; tbt)

∂x

∣∣∣∣
x=0

. (6.7)

v) Show that

f(tbt) =
e−1/4Dtbt√

4πDt3
bt

. (6.8)

Show that for long tbt, f(tbt) ∼ t−3/2
bt , a power law behavior.

vi) The cumulative distribution function, F(tbt), or CDF, of the continuous
probability distribution is related to the probability density function as

F(tbt) =

∫ tbt

−∞
dt′bt f(t′bt). (6.9)

Show that for long times,

F(tbt) ≈ 1 − ct−1/2
bt , (6.10)

where c is a positive constant.

b) Now we will approach this problem using a computer simulation. We start
at x = −1 at time t = 0. We “flip a coin,” or choose a random number to
decide whether we step left or right. We do this again and again, keeping track
of how many steps we take and what the x position is. As soon as x becomes
nonnegative, we have exited the backtrack. The total time for a backtrack is
then τnsteps.
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i) Write a function that computes the number of steps it takes for a random
walker (i.e., polymerase) starting at position x = −1 to get to position
x = 0. It should return the number of steps to take the walk.

ii) Generate 10,000 of these backtracks in order to get enough samples out
of f(tbt). The calculationmay take a fewminutes. If you are using Python
and are interested in a way to really speed up this calculation, check out
Numba.

iii) It is often useful to display probability distributions using their empirical
cumulative distribution function, or ECDF. If you have many samples
out of a distribution (you now have 10,000 samples out of P(tbt)), the
ECDF is defined as

ECDF(x) = fraction of samples ≤ x. (6.11)

In this case, it is more informative to plot the empirical complementary
cumulative distribution function ECCDF, which is

ECCDF(x) = 1 − ECDF(x). (6.12)

Plot the ECCDF of your samples. Add a plot of the CCDF, which is
given by 1 − F(tbt). You need only plot the large t limit of the CCDF.
Describe how this shows the power law nature of the probability density
function f(tbt). Hint: Think about what axes you should plot on a log
scale to make this plot informative.

c) Interestingly, many researchers thought (and maybe still do) there were two
classes of backtracks: long and short. Is the hypothesis that the backtrack is a
randomwalk process commensurate with seeing both very long and very short
backtracks? Explain your reasoning.
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