
BE/APh 161: Physical Biology of the Cell
Justin Bois

Caltech

Winter, 2018

© 2018 Justin Bois, except for selected figures, with citations noted.
This work is licensed under a Creative Commons Attribution License CC-BY 4.0.

https://creativecommons.org/licenses/by/4.0/


5 Two-statemodels case study: mechanosensitive ion chan-
nels

In the last lecture, we worked through some basic ideas of statistical mechanics and
applied them to ligand-receptor binding. The simple ligand-receptor binding exam-
ple belongs to a class of two-state models. As the name suggests, these are models
where there are two states to consider. In the ligand-receptor binding example, there
were two states for the receptor, bound and unbound. A great many systems may be
modeled with two-state models, and we can use the tools of statistical mechanics to
derive useful expressions describing their equilibrium behavior.

In this lecture, we will investigate another two-state model, this time ion chan-
nels. Ion channels are transmembrane protein complexes that can open and close to
mediate the transport of ions in and out of a cell. We will use mechanosensitve ion
channels, such as Mscl in E. coli as our first case study in two-state models.

5.1 Experimental analysis of ion channels

Bert Sakmann and Erwin Neher developed the patch clamp techniquewhereby re-
searchers can measure current through a single ion channel. Such readings can give
traces like those shown in Fig. 9.

If we consider a long time trace, we can compute QPQFO, the equilibrium probabil-
ity that an ion channel is open, as the total time during the trace where the channel
is open divided by the total time of the trace. The greater QPQFO is, the more ions can
flow through it per unit time.

5.2 A simple two-state model for an ion channel

In order to compute QPQFO for an ion channel, we define two states, open and closed.
We can assign energies to these two states, &PQFO and &DMPTFE. We can then write a
states and weights table, as in the previous lecture.

state energy statistical weight

closed &DMPTFE F−Ȁ&DMPTFE

open &PQFO F−Ȁ&PQFO

We can then compute the probability that the channel is open as

QPQFO =
F−Ȁ&PQFO

F−Ȁ&PQFO + F−Ȁ&DMPTFE
=

F−Ȁ (&PQFO−&DMPTFE)

� + F−Ȁ (&PQFO−&DMPTFE)
. (5.1)
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Vol t age dependence of sodi umchannel gat i ng. ( A) Asi ngl e t r ans- f aci ng
sodi umchannel was i ncor por at ed i nt o a di phyt anoyl PC bi l ayer f or med acr oss a 70-
Amaper t ur e bat hed i n 0. 5 MNaCl medi umI ( ci s) and 0 . 2 MNaCl medi umI pl us
1 AMBTX( t r ans) . The cur r ent was r ecor ded under vol t age- cl amp condi t i ons whi l e
t he vol t age was changed i n 10- mVst eps l ast i ng 1 mi n f r om- 135 t o - 55 mV. The
cur r ent r ecor ds wer e f i l t er ed at 1 kHz, conver t ed t o di gi t al f or m at a sampl i ng
f r equency of 5 kHz, and pl ot t ed at r educed speed on a Goul d 2200 S char t r ecor der
( Goul d, I nc . , Cl evel and, OH) . ( B) The upper r ecor d i s a comput er - di gi t i zed si gnal
r ecor ded at an appl i ed vol ume of V= - 95 mVunder same condi t i ons as i n A. Af t er
f i l t er i ng at 2 kHz, t he r ecor ds wer e di gi t i zed at a sampl i ng i nt er val of 100 As . A
downwar d def l ect i on i s a channel openi ng event and t he next upwar d st ep i s
associ at ed wi t h channel cl osi ng. Tr ansi t i ons bet ween t he cl osed and open st at es ar e
i ndi cat ed by t he ar r ows . The l ower r ecor d i s t he r econst r uct i on of t he si gnal by a
pat t er n- r ecogni t i on comput er pr ogr am( Labar ca et al . , 1984) .
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Figure 9: Patch clamp recordings of a single sodium ion channel in a reconstituted
lipid bilayer. A. Recordings of current taken at different voltages. For a voltage of high
magnitude, the channel has a constant current, indicating it is almost always open. For
voltage of low magnitude, it is closed. B. Detail of the trace at -95 mV. The bottom
trace shows a digitized version, displaying when the channel is open or closed. Figure
taken from Keller, et al., J. Gen. Physiol., 88, 1–13, 1986..

Naturally, the open and closed energies will depend on the voltage, which will give
QPQFO as a function of voltage. This is an example of a voltage gaged ion channel.
But for our present case study, we will consider mechanosensitive ion channels,
where QPQFO (via the energy of the two states of the channel) depends on the tension
in the membrane. So, our goal is to write

&PQFO = &PQFO(ȁ ), (5.2)

where ȁ is the membrane tension, and then compute QPQFO using the Boltzmann
weights.

Before we proceed to this calculation, we first provide some context as to why
a cell would need mechanosensitive ion channels to deal with sudden changes in
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pressure due to osmotic shock.

5.3 Osmotic pressure

Osmotic pressure, is a pressure exerted across a membrane due to differences in
concentration of solute on either side of the membrane. In the case of Mscl, the
solute is positive ions. We can understand osmotic pressure by looking at the ther-
modynamics of dilute solutions. The chemical potential of water on either side of
a cell membrane, must be equal at equilibrium. That is, the chemical potential of
water in the cell must equal that in the environment.

Ȋ DFMM
)�0 = Ȋ FOW

)�0. (5.3)

In the previous lecture in equation (4.56), I stated without proof (see section 6.2.2 of
PBoC2) that the chemical potential of water in a dilute solution is

Ȋ )�0(Q,5) = Ȋ �
)�0(Q,5)− L#5Y, (5.4)

where Y is the mole fraction of solute molecules. Note that the chemical potential is
in general a function of pressure and temperature. So, at equilibrium, we have

Ȋ �
)�0(QDFMM,5)− L#5YDFMM = Ȋ �

)�0(QFOW,5)− L#5YFOW. (5.5)

This implies that

Ȋ �
)�0(QDFMM,5)− Ȋ �

)�0(QFOW,5) = L#5(YDFMM − YFOW). (5.6)

Note that we have assumed thermal equilibrium. Then, if the concentration of solute
molecules in the cell is different than in the environment, YDFMM ̸= YFOW, then the inside
and outside of the cell must have different pressure. This difference in pressure,
ɠ ≡ QDFMM − QFOW, is called the osmotic pressure. To proceed, we can expand the left
hand side of the above equation about ɠ = QDFMM − QFOW = � to first order to get

Ȋ �
)�0(QDFMM,5)− Ȋ �

)�0(QFOW,5) ≈
(
∂Ȋ �

)�0
∂Q

)
ɠ . (5.7)

The differential in this equation is the volume of a water molecule, as we know from
thermodynamics.2

∂Ȋ �
)�0

∂Q = W)�0 = 7//)�0. (5.8)

2To see this, consider the total Legendre transform of the free energy, � = −4 E5+7 EQ−/ EȊ ,
and compute (∂Ȋ/∂Q)5.
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Thus, we have

7//)�0 ɠ = L#5(YDFMM − YFOW). (5.9)

Recall that YDFMM ≈ /DFMM
TPMVUF//)�0. Using this fact, we have

ɠ = L#5(DDFMM − DFOW), (5.10)

were D represents a concentration, /TPMVUF/7.

The typical concentration of positive ions in E. coli is approximately 200 mM
(BNID 104049), or about 0.1 molecules per cubic nanometer. Thus, the osmotic
pressure in an E. coli cell, assuming that DFOW ≈ � (which would be the case if you put
a cell in deionized water) is

ɠ ≈ � pN-nm× �.� nm−� = �.� pN/nm�. (5.11)

Given the conversion that 1 pN/nm� ≈ �� atm, the osmotic pressure in E. coli in
deionized water is approximately 4 atm. The cell can handle the pressure with its
cell wall, but you can imagine that if you rapidly changed the ionic conditions outside
the cell, it suddenly has to withstand a very large pressure, which can lead to the cell
bursting. Mechanosensitive ion channels respond to increasedmembrane tension as
a result of osmotic shock to let ions in or out to relieve osmotic pressure.

5.4 Tension and the ion channel

When the ion channel is closed, the membrane is more stretched than when it is
open. This is because a closed channel pulls themembranemore taught, and an open
membrane can relieve the tension. The opening of the channel leads to a change in
total area of the surface of the cell, ɔ". We should take into account the areal stretch
of the membrane when considering the energetics of channel opening. So, we have
&TUSFUDI = &TUSFUDI(ɔ"), and define ɔ" = � for the closed state. We write &TUSFUDI as a
Taylor series in ɔ" about ɔ" = �. To first order,

&TUSFUDI
PQFO = &TUSFUDI

DMPTFE − ȁ ɔ". (5.12)

It is clear from the Taylor expansion that ȁ is a tension (with dimension force per
length). We have chosen a negative sign to ensure that ȁ is positive under our def-
inition that ɔ" is positive. The stretching energy of the open state is less than the
closed state. Thus, we have

&DMPTFE = &�
DMPTFE + &TUSFUDI

DMPTFE , (5.13)

&PQFO = &�
PQFO + &TUSFUDI

DMPTFE − ȁ ɔ". (5.14)

We have divided the energy of a state into the energetics associated with the state of
the channel itself, marked by a naught superscript, and the energy associated with
stretching the membrane. If we define &�

DMPTFE + &TUSFUDI
DMPTFE as our reference energy, and

ȃ ≡ &�
PQFO − &�

DMPTFE, our updated states and weights table is as follows.
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state energy statistical weight

closed 0 �
open ȃ − ȁ ɔ" F−Ȁ (ȃ−ȁ ɔ")

We can now write our updated expression for the probability of the ion channel
being open as a function of the membrane tension ȁ .

QPQFO =
F−Ȁ (ȃ−ȁ ɔ")

� + F−Ȁ (ȃ−ȁ ɔ") . (5.15)

5.5 Determining the parameters

As we have seen again and again in the course, physical modeling of cellular sys-
tems exposes measurable parameters and testable hypotheses. So, can we do a patch
clamp experiment to determine the parameters? Perozo and coworkers (Perozo, et
al., Nat. Struct. Biol., 9, 696–703, 2002) did just that. They adjusted the applied
pressure across a reconstituted membrane and could measure the current through a
single Mscl channel. They then computed QPQFO as I described above for the voltage
gated ion channel. I digitized the data from their measurements and show them in
Fig. 10.

Figure 10: Digitized data from a patch clamp experiment from Perozo, et al., Nat.
Struct. Biol., 9, 696–703, 2002.

As we will derive when we do membrane mechanics later in the course, the ten-
sion ȁ in themembrane is directly proportional to the applied pressure. Defining the
constant of proportionality to be ǿ , we can write the theoretical curve describing the
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experimental data as

QPQFO =
F−Ȁ (ȃ−ǿQɔ")

� + F−Ȁ (ȃ−ǿQɔ") , (5.16)

where Q is the applied pressure. This expression has five parameters, Ȁ , ǿ , ɔ",
&�

PQFO, and &�
DMPTFE, where the last two are present in ȃ . As we can already see, the

equation we have derived for QPQFO can only delineate the difference in the open and
closed energies of the ion channel, parametrized by ǿ . The experiments were done
at room temperature (about 295 K), so we know Ȁ ≈ �/(� pN-nm). Wemight know
what ɔ" is from structural studies, but let’s assume we do not know it. By defining
B = ǿ ɔ", and re-writing QPQFO,

QPQFO =
F−Ȁ ȃ FȀBQ

� + F−Ȁ ȃ FȀBQ , (5.17)

we see that we can only determine two constants frommeasurements of QPQFO (given
that we know Ȁ ), ȃ , the difference in energy of the open and closed states of the
channel in the absence of tension, and B, which describes how tension on the mem-
brane serves to open channels.

We can perform a nonlinear regression to obtain estimates for the parameters
Ȁ ȃ and ȀB. The code to do the regression appears below (with some LATEX-based
problemswith displaying unicode at the very end of the script). To do the regression,
we use least squares, as implement in SciPy.

Performing the regression, we get that the most probable parameter values are
Ȁ ȃ = �.� and ȀB = �.� (mmHg)−�. The result is shown in Fig. 11.

Figure 11: Curve fit of the Perozo, et al., patch clamp data.

Interestingly, we were able to obtain that absence tension on the membrane, the
energy difference between the open and closed state is about 9 L#5. This gives an
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open probability in the absence of tension of about ��−�, which would be difficult
to observe experimentally by just measuring current through an un-tensed channel.
This also means that in the absence of tension, the channel is almost always closed.
It takes tension to open it, hence the name mechanosensitive.

This exercise has shown the power of two-state models in helping to set up ex-
periments to probe the physical nature of ion channels.
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