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15 The cell as a material

The cell as a whole behaves like a viscoelastic material. By viscoelastic, we mean
the the cell has properties that are both fluid-like and solid-like. As a reminder, the
stress/strain relationship for a solid is

ȑ = Eȃ, (15.1)

where ȃ is the strain, ȑ is the stress, and E is the Young’s modulus. That is to say
that the stress is directly proportional to the strain, at least for small stresses/strains.
Nonlinearities start to become important for larger stresses or strains.

Conversely, the stress is proportional to the strain rate for a viscous fluid.

ȑ = ȅȃ̇, (15.2)

where the overdot signifies time differentiation.

15.1 Storage and loss moduli

Imagine the following thought experiment. A material (either a cell, or something
like a reconstituted actin network) is subjected to a periodic stress with frequency ȗ
and amplitude ȑ0.

ȑ(t) = ȑ0 sin ȗt, (15.3)

After some time, the strain will also be periodic, with amplitude ȃ0 and frequency ȗ.
However, it will not necessarily be in phase with the stress, so we define a phase shift
Ȃ.

ȃ(t) = ȃ̄ + ȃ0 sin(ȗt − Ȃ), (15.4)

where ȃ̄ is the baseline strain from the oscillation. If Ȃ = 0, then ȑ ∝ ȃ, so the
material behaves like an elastic solid.2 If Ȃ = Ȏ/2, then

ȃ(t) = ȃ0 sin(ȗt − Ȃ) = ȃ0 cos ȗt. (15.5)

In this case, then ȑ(t) ∝ ȃ̇(t), so the material behaves like a viscous solid. For phase
shifts in between, the material behaves both like a solid (strain in phase with the
stress) and like a viscous fluid (strain out of phase with the stress). We can define
parameters to describe the solid-like and fluid-like responses of a material to stress.

2I am being loose with the ∝ symbol here. There is an additive constant, ȃ̄, but that constant is
zero for purely elastic responses, as we will see later in the response for a Maxwell material.
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These parameters are the storage and lossmoduli. They are defined in terms of the
amplitudes of the stress and strain amplitudes and the phase shift Ȃ. The are

storage modulus = E′ =
ȑ0

ȃ0
cos Ȃ (15.6)

loss modulus = E′′ =
ȑ0

ȃ0
sin Ȃ. (15.7)

These are in general both frequency dependent. They can be measured empirically.
Typically the stress is imposed (so ȑ0 is known), and the strain is measured. The
storage modulus is measure of the solid-like response and the loss modulus is a mea-
sure of the viscous-like response.

15.2 Linear viscoelasticity

While the storage and loss moduli are experimentally determined, we do not have
a generic model for how a material responds to stress. This is where the theory of
linear viscoelasticity is useful. We will explore this idea first through example and
then sharpen what linear viscoelasticity is.

15.2.1 The Maxwell model

Imagine we have a material that is both solid-like and fluid-like. I will write down a
constitutive relation and then show that the material is solid like on short time scales
(high frequency) and fluid like on long time scales (low frequency). The constitutive
relation is

ȑ + ȒM ȑ̇ = ȅȃ̇. (15.8)

Here, ȒM = ȅ/E is the Maxwell time. Let us now perform the experiment where
we exert a periodic stress on this material. We take ȑ(t) = ȑ0 sin ȗt. Then, we have

ȑ0(sin ȗt + ȒMȗ cos ȗt) = ȅȃ̇. (15.9)

As a result, we have

ȃ̇ =
ȑ0

ȅ (sin ȗt + ȒMȗ cos ȗt). (15.10)

We can integrate this ODE to get

ȃ = ȑ0

(
−cos ȗt

ȅȗ +
sin ȗt

E

)
+ C, (15.11)
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where C is an integration constant. If we take ȃ(0) = 0, then C = ȑ0/ȅȗ, giving

ȃ = ȑ0

(
−cos ȗt

ȅȗ +
sin ȗt

E

)
+

ȑ0

ȅȗ (15.12)

We can rearrange our expression for the strain by multiplying both sides by E to
get

Eȃ = − ȑ0

ȒMȗ cos ȗt + ȑ0 sin ȗt +
ȑ0

ȒMȗ . (15.13)

Now, if ȗȒM ≫ 1, i.e., for high frequencies, the first and last terms are negligible
and we have

Eȃ = ȑ0 sin ȗt = ȑ, (15.14)

which is the constitutive relation for an elastic solid. For low frequencies, the second
term is negligible and we have

Eȃ = − ȑ0

ȒMȗ cos ȗt +
ȑ0

ȒMȗ (15.15)

so

ȃ̇ =
ȑ0

ȅ sin ȗt = ȑ/ȅ, (15.16)

which is the constitutive relation for a viscous fluid. So, the material with this con-
stitutive relation is elastic on short time scales and viscous on long time scales.

15.2.2 The creep function

Instead of investigating how the material response to an oscillatory stress, imaging
we instead suddenly impose a stress ȑ0 upon the material. So, we have

ȑ(t) = ȑ0Ȇ(t), (15.17)

where Ȇ(t) is the Heaviside step function.

We will now compute the creep function for a Maxwell material. Inserting this
into the constitutive relation (15.8), and noting that the time derivative of aHeaviside
function is a Dirac delta function, we have

ȑ0Ȇ(t) + ȑ0ȒMȂ(t) = ȅȃ̇. (15.18)

We can solve this differential equation by integrating.

ȃ =

∫ t

−∞
dt′
(ȑ0

ȅ Ȇ(t′) + ȑ0

E
Ȃ(t′)

)
=

ȑ0

ȅ tȆ(t) + ȑ0

E
Ȇ(t) (15.19)
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=
ȑ0

E

(
1+

t
ȒM

)
Ȇ(t).

In general, we can write the response to a step in stress as

ȃ(t) = ȑ0J(t)Ȇ(t), (15.20)

where J(t) is called the creep function. For a Maxwell material,

J(t) = E−1(1+ t/ȒM). (15.21)

We note that for t ≫ ȒM, J(t), and therefore also ȃ(t) diverge. So, for long times,
a Maxwell material behaves like a fluid with J(t) ≈ ȅ−1t and ȃ(t) ≈ ȑ0ȅ−1t, so that
ȃ̇ ≈ ȑ0/ȅ, the constitutive relation for a viscous fluid.

Similarly, for t ≪ ȒM, J(t) = E−1, so that ȃ = ȑ0/E. the constitutive relation for
an elastic solid.

15.2.3 The creep function and linear superposition

The principle of linear superposition states that for any linear operatorL, if Lfi =
gi, then

L
(
∑

i

fi

)
=
∑

i

gi. (15.22)

In linear viscoelasticity theory, the constitutive relations are all of the form

Lȃ = g(ȑ, ȑ̇, ȑ̈, . . .). (15.23)

For example, for a Maxwell material, we can define the linear operator

L = ȅ d
dt
, and g(ȑ, ȑ̇) = ȑ + ȒM ȑ̇. (15.24)

We looked at the creep function for a single step in stress. Now, let’s say we take
two steps in stress. For concreteness, the stress prior to the first step is stress is ȑinit

the magnitude of the steps, which happen at time t0 and t1, are ɔȑ0 and ɔȑ1.

ȑ(t) = ȑinit + ɔȑ0Ȇ(t − t0) + ɔȑ1Ȇ(t − t1). (15.25)

We can directly apply the superposition principle to get the response in terms of the
creep function for the single step.

ȃ(t) = ȑinitJ(t) + ɔȑ0J(t − t0)Ȇ(t − t0) + ɔȑ1J(t − t1)Ȇ(t − t1). (15.26)
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If we extend this to many steps, we have, again by superposition,

ȃ(t) = ȑinitJ(t) +
∑

i

ɔȑi J(t − ti)Ȇ(t − ti). (15.27)

This result is useful for interpreting experiments where more than one step in stress
are taken.

We can consider the case of infinitessimal steps, which is what we would get with
smoothly varying stress. Defining ɔti = ti − ti−1, we have,

∑

i

ɔȑi Ȇ(t − ti) =
∑

i

ɔti
ɔȑi

ɔti
Ȇ(t − ti) ≈

∫ t

0
dt′

dȑ(t′)
dt′

. (15.28)

Thus, we have

ȃ(t) = ȑinitJ(t) +
∫ t

0
dt′ J(t − t′) ȑ̇(t), (15.29)

where we have arbitrarily taken t0 = 0. Thus, we see that for any applied stress, we
may use the known creep function to compute the strain by evaluating an integral.
We can perform integration by parts to get

ȃ(t) = ȑinitJ(t) + (J(t − t′)ȑ(t′))|t0 −
∫ t

0
dt′

dJ(t − t′)
dt′

ȑ(t′)

= J(0)ȑ(t) +
∫ t

0
dt′ ȑ(t′) dJ(t − t′)

d(t − t′)
, (15.30)

an alternative and sometimes more convenient expression.

We can use this expression to derive the response of a Maxwell material to oscil-
latory forcing. We take ȑ(t) = ȑ0 sin ȗt. For a Maxwell material, J(0) = E−1 and
dJ/dt = ȅ−1. We consider the case where we start the oscillation from rest at t = 0.
Then,

ȃ(t) = ȑ0

E
sin ȗt +

ȑ0

ȅ

∫ t

0
dt′ sin ȗt′ =

ȑ0

E
sin ȗt − ȑ0

ȅȗ cos ȗt +
ȑ0

ȅȗ . (15.31)

This expression is valid for positive times. For negative times, ȃ = 0. This is the
same expression we got in section 15.2.1.

15.2.4 Storage and loss moduli for a Maxwell material

To compute the storage and loss moduli, we subject a material to oscillatory stress
and write the response in terms of the amplitude and phase shift using the constitu-
tive relation. We already worked out the result two different ways.

ȃ(t) = − ȑ0

ȅȗ cos ȗt +
ȑ0

E
sin ȗt +

ȑ0

ȅȗ (15.32)
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To compute the storage and loss moduli, we need to write the strain in the form

ȃ(t) = ȃ̄ + ȃ0 sin(ȗt − Ȃ). (15.33)

We use the trigonometric identity that

a sin x + b cos x =
√

a2 + b2 sin(x + Ȃ), (15.34)

with tan Ȃ =
b
a
. (15.35)

This gives

ȃ(t) = ȑ0

ȅȗ + ȑ0

√
(ȅȗ)−2 + E−2 sin(ȗt − Ȃ), (15.36)

with tan Ȃ =
E

ȅȗ =
1

ȒMȗ . (15.37)

Note that

(ȅȗ)−2 + E−2 =
1
E2

(
1+

(
E

ȅȗ

)2
)

=
1+ tan2 Ȃ

E2 . (15.38)

Then, we have

ȃ(t) = ȑ0

ȅȗ +
ȑ0

E

(
1+ tan2 Ȃ

)
sin(ȗt − Ȃ). (15.39)

We introduce another trigonometric identity, tan2 x = sec2 x − 1, to get

ȃ(t) = ȑ0

ȅȗ +
ȑ0

E cos Ȃ sin(ȗt − Ȃ). (15.40)

From this expression, we see that

cos Ȃ =
ȑ0

ȃ0E
. (15.41)

So, the storage modulus is

E′ =
ȑ0

ȃ0
cos Ȃ =

ȑ2
0

Eȃ2
0
. (15.42)

From equation (15.36), we have

ȃ0 = ȑ0

√
(ȅȗ)−2 + E−2, (15.43)

so

E′ =
1

E ((ȅȗ)−2 + E−2)
=

E(ȅȗ)2

E2 + (ȅȗ)2
= E

(ȒMȗ)2

1+ (ȒMȗ)2
. (15.44)
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To find the loss modulus, we not that

sin Ȃ = tan Ȃ cos Ȃ =
E

ȅȗ
ȑ0

ȃ0E
=

ȑ0

ȃ0ȅȗ . (15.45)

Then, the loss modulus is

E′′ =
ȑ2
0

ȃ2
0 ȅȗ =

1
ȅȗ ((ȅȗ)−2 + E−2)

=
E2ȅȗ

E2 + (ȅȗ)2
= E

ȒMȗ
1+ (ȒMȗ)2

. (15.46)

A plot of the storage and loss moduli as a function of the oscillation frequency ȗ is
shown in Fig. 9. The storage modulus asymptotes to the Young’s modulus at high
frequency. At low frequency, the loss modulus is given by ȅȗ.

Figure 9: The storage and loss moduli (scaled by the Young’s modulus of the
elastic element) for a Maxwell material as a function of frequency.

15.2.5 Elastic and viscous elements

We can think of the Maxwell model diagrammatically as an elastic element in series
with a viscous element, as show in Fig. 10. When a constant stress is applied to the
ends of the diagram, the elastic spring responds instantly, while the viscous damper
gradually releases this stress.

m

1

E

m

1

⌘

Figure 10: Diagram of a Maxwell material.
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We could derive the constitutive relation from the diagram. The stress is the
same throughout the diagram, but the strains add. We can consider the stress and
strain on each element.

ȑ = ȑe = ȑv (15.47)

ȃ = ȃe + ȃv. (15.48)

We also have the familiar constitutive relation for individual elements.

ȑe = Eȃ (15.49)

ȑv = ȅȃ̇. (15.50)

To derive the constitutive relation, we differentiate the above strain equation with
respect to time.

ȃ̇ = ȃ̇e + ȃ̇v. (15.51)

Using the constitutive relations for the individual elements, we then have

ȃ̇ =
ȑ̇e

E
+

ȑv

ȅ . (15.52)

But ȑ = ȑe = ȑv, so we have

ȃ̇ =
ȑ̇
E
+

ȑ
ȅ . (15.53)

Multiplying both sides by ȅ gives the constitutive relation for a Maxwell material.

ȑ + ȒM ȑ̇ = ȅȃ̇. (15.54)

We can construct other models from diagrams. The main idea is:

1) For elements in series, strains add and stresses are equal.

2) For elements in parallel, stresses add and strains are equal.

Linear viscoelasticity involves connecting these elements together taking the familiar
linear constitutive relations for each element.

15.2.6 The Kelvin-Voigt solid

Now, instead of considering the elastic and viscous elements in series, consider them
in parallel, as in Fig. 11. This is called the Kelvin-Voigt model. We can derive the
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constitutive relation using the same method as before. Because the elements are in
parallel, their stresses add and the strains are equal.

m

1

m

1

E

⌘

Figure 11: Diagram of a Kelvin-Voigt solid.

ȑ = ȑe + ȑv = Eȃ + ȅȃ̇. (15.55)

We can compute the creep function of a Kelvin-Voigt solid.

ȅȃ̇ + Eȃ = ȑ0Ȇ(t). (15.56)

We solve this by integrating factor.

ȃ(t) = ȑ0

E

(
1− e−t/ȒM

)
Ȇ(t), (15.57)

giving a creep function of

J(t) = E−1 (1− e−t/ȒM
)
. (15.58)

So, for t ≫ ȒM, J(t) → E−1, giving ȃ = ȑ0/E, the constitutive relation for an elastic
solid. For t ≪ ȒM,

J(t) ≈ 1
E
(1− (1− t/ȒM)) = t/ȅ, (15.59)

which we saw before is the creep function for a viscous fluid. So, for a Kelvin-Voigt
solid, deformation is initially resisted by viscous (frictional) dissipation until the ma-
terial is eventually stretched as a solid.

15.2.7 Jeffreys fluid

A Jeffreys fluid is a good linear viscoelastic description of cells and their cortices.
It consists of a Kelvin-Voigt element in series with a viscous element. As a result,
at long time scales, the viscous element dominates the dynamics and the material
behaves like a viscous fluid. This is commonly seen in cells at very long time scales,
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since the actin network have time to turn over and be reconstructed, thereby giving
liquid-like behavior. At very short times, frictional losses resist deformation as the
actin filaments slide against one another. At intermediate times, the cell responds
elastically as the intact filaments are compressed and stretched.

Now, cell cortices also consume energy and exert stress on themselves via activity
of myosin motors. This is called active stress. We therefore add an active stress
element in parallel with the Jeffreys fluid to model the active stresses exerted by the
fluid. The resulting diagram is shown in Fig. 12.

m

1

m

1

m

1

m

1

m

1

⇣ ⇣

E E

⌘

�a �a

b)

Figure 12: Diagram of an active Jeffreys fluid.

To work out the constitutive relation, we recall our rules: elements in series have
additive strains and equal stresses and elements in series have additive stresses and
equal strains. Thus, we have

ȑ = ȑa + ȑJ (15.60)

ȑJ = ȑKV = ȑv (15.61)

ȃ = ȃKV + ȃv. (15.62)

Using the constitutive relation for Kelvin-Voigt and a viscous element, we have

ȑJ = EȃKV + Ȅȃ̇KV = ȅȃ̇v = ȑv (15.63)

Now, differentiating equation (15.62), we have

ȃ̇ = ȃ̇KV + ȃ̇v = ȃ̇KV +
ȑJ

ȅ , (15.64)

wherewe have used the constitutive relation for a viscous element in the last equality.
We can differentiate again and rearrange to get

ȃ̈KV = ȃ̈ −
ȑ̇J

ȅ . (15.65)

Differentiating the constitutive relation for the a Kelvin-Voigt element, we have

ȑ̇J = Eȃ̇KV + Ȅȃ̈KV. (15.66)
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We have from ȃ̇KV from equation (15.64) and for ȃ̈KV from (15.65), which gives

ȑ̇J = E
(

ȃ̇ −
ȑJ

ȅ

)
+ Ȅ

(
ȃ̈ −

ȑ̇J

ȅ

)
. (15.67)

This can be rearranged to give

ȑJ + Ȓ1 ȑ̇J = ȅ(ȃ̇ + Ȓ2 ȃ̈), (15.68)

with Ȓ1 = (ȅ + Ȅ)/E and Ȓ2 = Ȅ/E. We have ȑJ = ȑ − ȑa, which gives

ȑ − ȑa + Ȓ1(ȑ̇ − ȑ̇a) = ȅ(ȃ̇ + Ȓ2 ȃ̈), (15.69)

the constitutive relation for an active Jeffreys fluid. In the homework, we will com-
pute the creep function and the storage and loss moduli for this material, a good
model for cells.
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