
BE/APh 161: Physical Biology of the Cell, Winter 2019
Homework #2

Due at the start of lecture, 2:30 PM, January 23, 2019.

Problem 2.1 (Mathematizing a cartoon for ciliar growth, 50 pts).
Another model for flagellar/ciliar growth was proposed in Howard, et al., Nat. Rev.
Mol. Biol., 12, 393–398, 2011. The cartoon is shown in Fig. 1, along with the text
from the caption in the paper.

Let c(x, t) be the concentration of active growth factors in the cilium and let ℓ(t)
be the length of the cilium.

a) Write down a set of differential equations to describe the dynamics of c and
ℓ. If you like, you may assume a constant number of cargo-carrying motors
as we did in lecture for the Chlamydomonas flagella, or you may assume that
the density of motors is constant. Be sure to state any other assumptions or
decisions you made in mathematizing the cartoon.

b) Nondimensionalize your dynamical equation(s) and comment on any physical
insight this procedure provides.

c) If you can, solve for ℓ(t) analytically. If cannot, solve it numerically. Use your
solution to also plot the growth rate, dℓ/dt, over time.
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quantitatively account for the spatial period 
and dynamics of the patterns.

Patterns generated by advection and 
diffusio n. When advection moves mate-
rial in one direction and diffusion tends to 
move the material in the opposite direction 
(down its concentration gradient), a new 
length scale emerges: λ = D/v (FIG. 2a). An 
example of this is the localization of myosin 
motor proteins at the tips of the stereocilia 
of hair cells (FIG. 2b), which is thought to be 
due to the combination of directed move-
ment of the motor along the actin filaments 
within the stereocilia (advection) and diffu-
sion that occurs when the motor detaches 
from the actin42. The stereocilia form the 
hair bundle, the mechanosensitive organelle 
of these cells, and proper stereocilial length, 
which is essential for hearing, is regulated 
by myosins43, although how exactly the 
motor localization controls length is still 
not understood.

Antenna mechanism. A particularly inter-
esting example of length determination 
takes place when the reaction involves the 
shortening of the polymer track on which 
active transport is occurring44,45. In this 
example, kinase-interacting protein 3 (Kip3) 
motors (which belong to the Kinesin-8 
family) bind randomly along the length of 
a microtubule at a rate ron per unit length 
of microtubule (proportional to the cyto-
plasmic Kip3 concentration); they move 
processively to the end of the microtubule 
and then remove a tubulin dimer before 
dissociating (FIG. 2c). This gives a depolym-
erization rate that depends on the micro-
tubule length: the longer the microtubule, 
the more motors land on it, the greater the 
flux of motors to the end and therefore the 
higher the rate of depoly merization. Thus, 
the microtubule acts as an antenna for 
motors. If the microtubule polymerization 
rate in the absence of motors (r+, which is 
proportional to the bulk tubulin concentra-
tion) is independent of length, and if the 
motor speed is much faster than the rate of 
microtubule growth due to polymerization, 
the characteristic length is λ = r+/ron (REF. 46) 
(FIG. 2d), which increases with the tubulin 
concentration and decreases with the motor 
concentration. The length is independent 
of the motor velocity, and only requires 
that the motors be fast enough to outpace 
growth and processive enough to reach the 
microtubule end.

This mechanism accounts for the role 
of Kinesin-8 in controlling the overall 
length of the mitotic spindle, as well as its 

role in centring the chromosomes in the 
metaphase spindle, which requires that the 
two half spindles (which span between the 
poles and the chromosomes) be the same 
length47–49. In this mechanism, the motor 
proteins act as molecular rulers that pace 
out the lengths of the microtubules; they 
then use depolymerizatio n as a readout of 
the length.

Patterns formed by advection and reaction. 
Patterns can also be generated by a combi-
nation of advection and reaction: the length 
scale is λ = v/k. Although no biological 
lengths are known to be regulated by such a 
mechanism, there are numerous candidates. 
For example, if motor proteins carry cargo 
molecules along the cytoskeletal filaments 
within cilia and microvilli, and the cargoes 

are inactivated over time, for example by 
phosphatases, then the deactivation of the 
cargoes could provide a length-dependent 
signal to the growing tip of the cilium or 
microvillus (FIG. 2e).

Patterns generated by viscosity and fric-
tion. Active material properties can also 
define length scales. Consider a viscoelastic 
materia l, such as a contractile tissue or the 
thin actomyosin cortex located under the 
plasma membrane of a cell. A gradient 
of motor activity in the material will cre-
ate an active stress gradient and lead to 
a velocity gradient; over long timescales, 
the material behaves as a viscous fluid. If 
there is friction with the surroundings, for 
example between the tissue and an adjacent 
rigid extracellular matrix or between the 
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Figure 1: A cartoon describing a possible mechanism for ciliar growth adapted
from Howard, et al., Nat. Rev. Mol. Biol., 12, 393–398, 2011. The text from
the caption in the paper reads as follows. “Schematic of an advection-reaction
model, a hypothetical mechanism for the length control of cilia and microvilli.
Cargoes, for example growth factors, carried along cilia and microvilli are in-
activated over time by phosphatases, which may provide a length-dependent
signal to the growing tip.”

Problem 2.2 (Boltzmann’s grave, 5 pts).
Boltzmann’s tomb is in Zentralfriedhoff in Vienna, a beautiful cemetery that also
contains the graves of some of the world’s greatest composers, including Beethoven,
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Brahms, Schubert, Strauss, Ligeti, and Falco. Boltzmann’s tomb is shown in Fig. 2.
Not the equations, S = k log W, at the top of the stone.

Figure 2: Boltzmann’s tomb inZentralfriedhoff inVienna. Photo fromDaderot,
licensed under CC-BY-SA-3.0.

Here, S is entropy, k is the Boltzmann constant, log refers to the natural loga-
rithm, and W is the number of microstates. In class on January 17, we derived the
famous Boltzmann distribution by maximizing the Shannon entropy, given that we
knew an average energy of our system of interest. Derive the equation on Boltz-
mann’s grave using the same technique. To do so, assume we do not know anything
about the energy of the system.

Problem 2.3 (Ligand-receptor binding and small numbers of molecules, 45 pts).
In this problem, we will explore the effect of having small number of ligands and
receptors in a small volume, as is often the case in cells. Imagine we have a cell with
volume Vcell that contains L total ligands and R total receptors. (Of course here we
mean copies of specific ligand-receptor pair; cells have lots of ligands and receptors
of different type.) The receptors and ligands are all free to move about in the cell.
Each receptor can bind a single ligand. Let n be the number of receptors that are
bound to ligands.

a) Compute the expected number of bound receptors, n, as a function of L, R,
and W ≡ KdVcell. In doing the calculation, assume that R and L are large,
which enables you to use

Kd =
cLcR

cLR
. (2.1)
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b) W is a dimensionless number. What is its physical meaning?

c) When L and R are not large, just knowing the expected number of bound re-
ceptors is not enough to fully understand what the molecules are doing in our
system. We therefore would like to know P(n), the probability mass function
of n. I.e., P(n) is the probability that there are n bound receptors at equilib-
rium. Show that

P(n) = [Wn n!(R − n)!(L − n)!]−1

min(R,L)∑
n=0

[Wn n!(R − n)!(L − n)!]−1

. (2.2)

d) Plot P(n) for various values of L, R, and W. Comment on what you see, es-
pecially for small L and R. By “small,” I mean between 1 and 100. (Are there
ligands and receptors with these sorts of copy numbers in cells?) Think care-
fully about how to represent your plot so that you can highlight the important
physical consequences of your analysis. Be sure to discuss your plots. Hint: It
will be difficult to compute the statistical weights and the partition function.
Work with logarithms of the statistical weights when you can. If you are using
Python,scipy.special.gammaln() andscipy.misc.logsumexp()
might be useful functions.

e) The coefficient of variation is the ratio of the standard deviation of a distri-
bution to its mean. Plot the coefficient of variation of P(n) for W = 1000,
R going from 1 to 105, and L = 2R. What does this say about variability in
number of of species? When can you just use your result from part (a), and
when should be think more carefully about the full distribution?
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