
BE/APh 161: Physical Biology of the Cell, Winter 2019
Homework #7

Due at the start of lecture, 2:30 PM, February 27, 2019.

Problem 7.1 (Genomes in cells, 10 pts).
In this problem we consider how genomes take up space in cells.

a) If your genome were a single strand of DNA, what would its approximate ra-
dius of gyration be if it were free in solution? What implications does this have
for the design of a cell?

b) Estimate the radius of gyration of the E. coli genome if it were not confined in
a cell. How does that compare to the size of an E. coli cell?

Problem 7.2 (The WLC in the stiff limit, 5 pts).
In class, we worked on deriving the mean squared end-to-end distance of a wormlike
chain. I made a sign error in lecture, which resulted in us getting the right limit for
with ξ p ≪ L limit (where ξ p is the persistence length and L is the total length of the
polymer), but the wrong limit for ξ p ≫ L. This is an example where taking limits
can be useful in checking your work.

Here, I repeat the derivation of the mean square end-to-end distance to get the
correct expression at the end. Remember that u(s) is the unit tangent vector to the
polymer, and we define the persistence length ξ p according to

⟨u(s) · u(s′)⟩ = e−|s−s′|/ξ p . (7.1)

(We later worked out a relationship between ξ p and the flexural rigidity, K, ξ p =
K/kBT.) Now, we compute the mean square end-to-end distance, using the fact that
the end-to-end vector is

R =

∫ L

0
ds u(s). (7.2)

We compute directly.

⟨R · R⟩ =
⟨(∫ L

0
ds u(s)

)
·
(∫ L

0
ds u(s)

)⟩
=

⟨∫ L

0
ds

∫ L

0
ds′ u(s) · u(s′)

⟩

=

∫ L

0
ds

∫ L

0
ds′ ⟨u(s)u(s′)⟩ =

∫ L

0
ds

∫ L

0
ds′ e−|s−s′|/ξ p

= 2
∫ L

0
ds

∫ s

0
ds′ e−(s−s′)/ξ p = 2

∫ L

0
ds e−s/ξ p

∫ s

0
ds′ es′/ξ p

= −2ξ p

∫ L

0
ds e−s/ξ p(1 − es/ξ p) = 2ξ p

∫ L

0
ds (1 − e−s/ξ p)
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= 2Lξ p

(
1 −

ξ p

L
(
1 − e−L/ξ p

))
. (7.3)

This is the correct expression, and in lecture I erroneously wrote

⟨R · R⟩ = 2Lξ p

(
1+

ξ p

L
(
1 − e−L/ξ p

))
(WRONG). (7.4)

In lecture, we showed (correctly, but with the incorrect full expression for ⟨R · R⟩)
that in the flexible chain limit, L ≫ ξ p, that ⟨R ·R⟩ ≈ 2Lξ p. Now, show that in the
stiff limit (L ≪ ξ p),

⟨R · R⟩ = L2
(

1 −O
(

L
ξ p

))
. (7.5)

Problem 7.3 (Viral packaging, 20 pts).
In this problem, we explore estimates of the energetics of viral packaging of ϕ29,
which we introduced in lecture.

a) (Based on problem 10.6 of PBoC2) Estimate the entropy penalty for packing
the genome in the viral capsid. You can assume that the entropy of the packed
state is nearly zero, since it features almost crystalline packaging. Compare
this entropy contribution to the free energy (equal to the entropy times the
temperature) to the total bending free energy of packing given by equation
10.42 of PBoC2. Hint: In computing the entropy of the unpacked state, re-
member that each configuration of the unpacked state has the same energy,
since it is a flexible chain on the length scale of the entire genome.

b) Compare the force required to pack the last bits of genome into the capsid as
given by equation 10.43 of PBoC2 and by the experimental result of ≈ 50 pN
discussed in lecture and in Figure 10.19(B) of PBoC2. What factors might ac-
count for any discrepancy youmay notice? Make sure you know how equation
10.43 of PBoC2 is derived.

Problem 7.4 (Flexural rigidity of biopolymers, adapted from problem 10.2 of PBoC2,
30 points).

a) Recall that the flexural rigidity of a filament is Keff = EI, where E is the
Young’s modulus and I is the geometric moment of inertia defined in lecture.
We also saw that the persistence length is given by ξ p = EI/kBT. Given the
persistence lengths of DNA, actin filaments, and microtubules (check your
lecture notes or BioNumbers), estimate their respective Young’s moduli by
computing the moment of inertia. You can look up geometric information
about the filaments in PBoC2 sections 2.2.3 and 10.5.1.
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Figure 4. Filopodial Markers Have Normal Distribution in Filopodia
Induced by CP Knockdown.

Knockdown B16F1 cells expressing pG-Super-T1 construct for four
days show numerous lateral filopodia (left column), dorsal filopodia
(middle column) and ventral stars (right column).
(A) Antibody staining reveals fascin along the length of filopodia.
(B) VASP (upper row) and actin (middle row) costaining reveals VASP
at the filopodial tips. Merged images of VASP and actin are shown
in bottom row. Boxed regions are enlarged in insets. Scale bars are
equal to 10 !m (left and middle columns) and 5 !m (right column).

analyses confirmed that the spikes and stars induced
by CP depletion were similar to filopodia.

Electron microscopy was carried out to evaluate the
phenotype of CP knockdown in B16F1 cells in more
detail. Low magnification views showed that control

Figure 5. Structural Organization of Filopodia in B16F1 Cellscells contained few filopodia that were restricted to the
(A and B) Control cells. Platinum replica EM shows few peripherallycell periphery (Figure 5A), whereas CP knockdown cells
located filopodia embedded into lamellipodial network. Deeper cy-showed abundant filopodial-like protrusions around the
toplasm shows sparser filament network.cell perimeter and on the dorsal surface (Figure 5C),
(C and D) CP knockdown cells. Abundant filopodia are apparent atwhich significantly varied in thickness and appeared both leading edge and dorsal surface. Deeper cytoplasm shows

emerging from the surrounding network. In addition, the dense filament network. High magnification images of control (B)
leading lamella of knockdown cells was filled with a and CP knockdown (D) filopodia show their similar structural organi-

zation. Enlarged image of boxed region in (C) shows that dorsaldense actin filament network, which contrasted with a
filopodium contains a bundle of parallel filaments. Scale bars arerather sparse lamella cytoskeleton in control cells and
equal to 5 !m (A, C) and 1 !m (B, D).suggested increased actin filament assembly away from

the leading edge after CP depletion. High resolution
analysis demonstrated that similar to normal filopodia Kinetic analysis was performed to determine the dy-

namics of induced filopodia and to evaluate the effect(Figure 5B), lateral (Figure 5D) and dorsal (inset in Figure
5C) protrusions in CP knockdown cells contained bun- of CP knockdown on the protrusion of the leading edge

(See Supplemental Movies S1 and S2 available at http://dles of long unbranched actin filaments that extended
almost the entire length of the bundle. Thus, EM data www.cell.com/cgi/content/full/118/3/363/DC1). Time

lapse movies of knockdown cells demonstrated thatare also consistent with the idea that CP knockdown-
induced genuine filopodia with proper structural organi- induced filopodia displayed normal dynamic features:

protrusive, retractile, and sweeping motility. Dorsal filo-zation.

Figure 1: A) Electronmicrograph of a B16F1 cell with a few peripherally located
filopodia. Scale bar, 5 µm. B) A close-up of one of the filopodia. Scale bar, 1
µm. Image taken fromMejillano, et al., Cell, 118, 363–373, 2004.

b) Filopodia are protrusions of bundled actin filaments often found in adherent
cells. They push against the cell membrane. The membrane pushes back on
the filopodium with a force of

F = 2πrγ , (7.6)

where r is the radius of the end of the filopodium and γ is the surface tension
of the membrane. Unfortunately, we do not have time this term to talk about
membrane tensions, but for this problem, we will take γ ≈ 0.035 pN/nm. We
will assume that the filopodium consists of approximately 30 filaments. We
will now investigate how long the filopodium can protrude before it buckles,
considering two limits.

i) First, we assume that the filaments in the filopodium are not crosslinked.
Find the length L that the filopodium can protrude before buckling.

ii) Now, consider the limit where the filaments in the filopodium are very
tightly crosslinked, so tightly crosslinked that the filopodium can be con-
sidered a solid rod. Find the length Lcl that the crosslinked filopodium
can protrude before buckling.

iii) In general, what is Lcl/L as a function of N, the number of filaments in
the filopodium?

Problem 7.5 (Polymerization as a force generator, 35 pts).
Imagine an actin filament is polymerizing against a compressive force. This might
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be the case if it polymerizes against a membrane, which can deform but nonetheless
provides a compressive force on the filament.

a) Let Kd be the dissociation constant for binding an additional actin monomer
to the end of an actin filament, as defined in lecture. Let δ be the increased
length of an actin filament as a result of adding one monomer. Show that at
equilibrium, the filament can exert a force of

Feq =
kBT
δ ln

c1

Kd
, (7.7)

where c1 is the concentration of actin monomer. Estimate Feq for actin, given
that cells typically have c1 ≈ 20 µM.Hint: It might help to think about states
and weights.

b) What is the maximal length of a filament such that it can polymerize against a
compressive load without buckling? Derive an analytical expression and then
plug in numbers for actin.

c) Feq is the maximal force a filament can exert against a compressive load, as
at equilibrium the polymerization force balances the compressive load. Ex-
perimentally, it is often the case that this force is never achieved, with poly-
merization essentially stalling at forces smaller than Feq. Provide an intuitive
explanation as to why this might be the case.
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