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3 Mathematizing cartoons

The word “model” in biology has many meanings. There are three main ones, so far as I can tell.

Cartoon models. These models are the typical cartoons or qualitative verbal descriptions we
see in text books or in discussion sections of biological papers. They are a sketch of what we think
might be happening in a system of interest, but they do not provide quantifiable predictions.

Physical models. These models give quantifiable predictions that must be true if a hypothesis
(which is often sketched as a cartoon) is true. Sometimes hard work and deep thought are needed to
generate quantitative predictions. This often requires “mathematizing” the cartoon. This is how a
physical model is derived from a cartoon. Oftentimes when biological physicists refer to a “model,”
they are talking about a physical model.

Generative statistical models. A generative statistical model specifies how we expect mea-
sured data to be generated using the language of probability. Specifically, it describes how the mea-
surements are expected to vary from the physical model because of measurement noise and other
sources of variation.

In this class, we will be working mainly on physical models. The connection of these models to
their respective cartoons is of paramount importance. We often think of biological systems in terms
of the cartoons, and we need to understand what parameters and what quantifiable measurements
result from the cartoons. Perhaps most importantly, we need to know what falsifiable hypotheses
follow from a cartoon.

In this lecture, we will learn how to go from a cartoon to a physical model. The authors of PBoC2
call this “mathematizing a cartoon.” We will do this mainly by example, and you will get a chance to
practice other examples in the homework throughout the course.

There is a companion Jupyter notebook to this lecture that has the details of the numerical cal-
culations.

3.1 Flagellar growth and length control in Chlamydomonas reinhardtii

Wewill cut our physicalmodeling teeth on a beautiful system: the growth of flagella inChlamydomonas
reinhardtii. Chlamydomonas has two flagella of the same length that it uses to swim. These flagella are
constructed frommicrotubules arranged in a fascinating structure called an axoneme. The flagella are
thought to be built by motor proteins that shuttle tubulin dimers from the bulk cytoplasm along the
microtubules of the flagella to the ends, where they are incorporated into the microtubules. At the
same time, there is spontaneous disassembly at the tip of the microtubules.

3.1.1 Our ƴrst try: a simple model

As a first try at modeling assembly, we assume the motors deliver tubulin to the tip of the flagellum at
a constant rate Ȁ and that the microtubules depolymerize from the time at a constant rate ǿ . Then,
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packaged into smaller IFT trains (with a smaller tubulin carrying
capacity) as the length of the flagellum increases (Engel et al.,
2009). The length independence of the total IFT protein content
can be explained if the same cycling IFT proteins must be
retrieved from the flagellar tip in order to form new trains. This
retrieval for individual particles would take longer as the flagellar
length increases, decreasing the amount of IFT protein available
for redeployment at any given time. However, there is currently
no direct evidence for such a restriction of IFT protein exchange,
and so we must consider how the quantity of IFT protein could be
held constant if IFT proteins are constantly moving in an out of
the flagellum. Moreover, a simple model in which an initial bolus
of IFT protein is confined within the flagellum does not explain
the remodeling of trains as a function of length. It therefore seems
likely that the flagellum will employ some sort of length sensing
or measuring mechanism to adjust the quantity of IFT particle
proteins that are imported into the flagellum.

Some candidates have been implicated in regulating this type
of sensing mechanism. Recent evidence has shown the critical
function of the Cep290 protein. Cep290 is a Meckel syndrome
associated protein that is located at the transition zone and
appears to regulate levels of IFT complexes and ciliary entry of
membrane associated proteins (Craige et al., 2010). Cep290
appears to be involved in membrane attachment to the transition
zone. The gating activity of Cep290 may be regulated by its

associated protein CP110. CP110 restricts cilia formation and
requires the interaction with CEP290 for this function (Tsang
et al., 2008). One model of ciliary entry based on import of the
Kif17 ciliary motor involves the shuttling of cilium-targeted
proteins by the nuclear import protein, importin b2 (Dishinger
et al., 2010). In this model, cargo is released into the ciliary
compartment due to displacement on importin by GTP-bound
Ran GTPase. An enrichment of RanGTP in the cilium is thought to
give rise to ciliary import. Other proteins thought to regulate
ciliary gating are the septins, which were shown to form a
membrane diffusion barrier (Hu et al., 2010). Recently, the idea
of a septin diffusion barrier has been challenged by the proposal
that proteins are excluded from the cilium by anchoring to the
cortical actin cytoskeleton (Francis et al., 2011).

Several findings must be addressed in order to further evaluate
the balance point model and alternative models involving feedback
mechanisms. The following two sections highlight recent identifi-
cation of modulators of flagellar length that involve direct mod-
ification of IFT or axoneme stability (Section 3.2) and signaling
mechanisms that can induce ciliary length changes (Section 3.3).

3.2. Length regulation related to axoneme modification

Because of recent explosion interest in regulation of ciliogen-
esis and ciliary length, a great deal more is known about proteins
essential for maintenance. Some of these proteins modify
mechanics of IFT, thereby axonemal assembly and elongation.
Others directly alter microtubule stability by altering post-trans-
lational modification state. In addition to the mechanisms that
can directly alter axoneme formation or stability, a great many
signaling pathways can also alter the percentage of ciliated cells
in a population or alter ciliary length (see Section 3.3) by
unknown mechanisms. It is possible that the pathways regulating
direct axoneme assembly involve yet unidentified downstream
effectors of altered signaling. A summary of ciliary length altering
proteins can be found in Table 1.

One class of proteins known to directly regulate axoneme
structure includes both cilia specific and cilia non-specific micro-
tubule motors. Anterograde motors such as the members of the
Kinesin-2 and -3 family described in Section 2.3 are required for
axoneme formation and result in shortened or absent cilia in mice
(Takeda et al., 1999), C. elegans (Cole et al., 1998; Morsci and Barr,
2011; Perkins et al., 1986; Snow et al., 2004) and Chlamydomonas
(Cole et al., 1998; Kozminski et al., 1995) among others when
disrupted. As discussed previously, in Leishmania and Giardia, micro-
tubule depolymerizing Kinesin-13 promotes flagellar disassembly
(Blaineau et al., 2007; Dawson et al., 2007), but this kinesin appears
to be required for proper flagellar regeneration as well in Chlamydo-
monas (Piao et al., 2009). In addition to kinesins, dyneins also play a
role in ciliary length regulation. A light chain of cytoplasmic dynein,
Tctex-1, is responsible for restricting cilia length. Loss of this subunit
results in increased cilia length (Palmer et al., 2011). Retrograde
intraflagellar transport is mediated by cytoplasmic dynein-2. In
Tetrahymena, loss of dynein-2 results in lengthened cilia (Asai et al.,
2009; Rajagopalan et al., 2009). Decreased expression of a dynein
intermediate chain, d2lic, by blocking its transcription results in
abnormally short nodal cilia (Bonnafe et al., 2004).

Alteration of intraflagellar transport proteins has also been
shown to prevent proper cilium formation. A murine hypomorph
of IFT88 called Tg737orpk results in shortened kidney cilia and is a
model for polycystic kidney disease (Pazour et al., 2000). The
small GTPase Arl-13 appears responsible for coupling IFT com-
plexes A and B. Its loss results in short cilia, an effect that may be
rescued by another GTPase Arl-3 (Li et al., 2010). IFT70, a complex
B component which binds directly to IFT46, is essential for
flagellar assembly (Fan et al., 2010). Defects in IFT170, a complex
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Fig. 1. Limiting-precursor and balance-point models for length control.
(A) Limiting-precursor model, in which a fixed number of structural subunits
(blue squares) contained with the cell (green circle) are incorporated into the final
structure thus fixing its length by their initial quantity. (B) Axonemal tubulin
dynamics underlying balance-point model. Tubulin subunits (blue squares) are
synthesized in the cytoplasm and transported out to the tip of the cilium by
intraflagellar transport (orange circles) where they assemble at the tip. Assembly
at the tip is balanced by continuous disassembly of subunits from the tip, which
are then returned to the cytoplasm. A putative pore or gate regulating entry of
ciliary proteins and IFT proteins is indicated by a red dotted line. In this
framework, steady-state length is achieved when the rates of assembly and
disassembly are equal. (C) Balance point model for length control. Disassembly
(red dotted line) is length-independent based on measurements of flagellar
resorbtion in the absence of assembly. Assembly is a decreasing function of length
because each IFT particle takes longer to move out to the tip as the length
increases, and thus delivers cargo less efficiently. Because the number of IFT
particles is fixed, independent of length, the overall efficiency of IFT is a decreasing
function of length (green curve). The unique length where the two rates balance
(blue arrow) is predicted to be the steady-state length of the cilium. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

P. Avasthi, W.F. Marshall / Differentiation 83 (2012) S30–S42S34

Figure 2: A cartoon sketch of the balance point model. Motor proteins (Orange cir-
cles) transport tubulin (blue squares) and other necessary axoneme growth elements
to the distal tip of the flagellum. There is spontaneous disassembly at the tip. Figure
taken from Avasthi and Marshall, Differentiation, 83, S30-S42, 2012.

the length of the flagellum, measured in units of number of added tubulin dimers is described by the
differential equation

Eℓ
EU = Ȁ − ǿ . (3.1)

The solution to this differential equation is

ℓ(U) = ℓ� + (Ȁ − ǿ )U. (3.2)

This model is obviously flawed because the flagellum would grow without bound (assuming Ȁ >
ǿ ). So, by mathematizing the model, we have immediately exposed a certain model as unfeasible.

3.1.2 A reƴnement: the “balance point model”

Marshall and Rosenbaum (2001) proposed a refinement on our first simple model. They noted that
there are a constant number of motor proteins present in the flagellum as it grows. So, the density of
motors is greater early on in the growth (when it is short) and more sparse later on (when it is long).
We might estimate that the rate of delivery of material to the tip of the microtubule is then propor-
tional to the motor density, ȏ = /*'5/ℓ, where /*'5 is the constant number of particles involved in
intraflagellar transport (IFT). Now, the dynamics read

Eℓ
EU = Ȁ/ℓ− ǿ , (3.3)
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where we have wrapped constants into the parameter Ȁ such that Ȁ ∝ /*'5. Now, we have a unique
steady state length of Ȁ/ǿ . Let’s look at this equation and see what it tells us about the dynamics of
microtubule growth.

It of often good practice, especially when doing a numerical solution, to nondimensionalize the
equations first. This limits the number of parameters we need to vary. For the balance point model,
we have two parameters, Ȁ and ǿ , which have units of length squared per time and length per time,
respectively. We can then construct a characteristic length scale Ȁ/ǿ and a characteristic time scale
Ȁ/ǿ �. We define dimensionless length ℓ̃ via ℓ = Ȁ ℓ̃/ǿ and dimensionless time Ũ via U = Ȁ Ũ/ǿ �.
Substituting these expressions into the balance point model gives

Eℓ̃
ẼU = ℓ̃−� − �. (3.4)

It’s useful to analyze the differential equation to get some qualitative features. We have already
established a unique steady state of ℓ̃ = �. Because the derivative positive for all ℓ̃ < � and negative
for all ℓ̃ > �, the flagellar length proceeds monotonically toward the steady state. We can rewrite
the differential equation in terms of the distance from the steady state, ȃ = � − ℓ̃. Making this
substitution gives

Eȃ
ẼU = − ȃ

� − ȃ . (3.5)

The flagellum approaches the steady state slowly2, with the distance from the steady state, ȃ , de-
creasing like ȃ/(� − ȃ ). At short times, we get incredibly fast growth. This is unphysical, since our
assumption of constant IFT particle concentration breaks down as the flagellar length goes to zero (as
this would result in infinite IFT particle concentration). This is a common feature of mathematical
models. They have a region of validity, in this case for ℓ not too close to zero.

The solution to the differential equation results in either a transcendental equation for ℓ̃ or use of
the Lambert-W function. Either way, the solution is ugly and not terribly informative. I am generally
of the opinion that solving differential equations is only useful if the solution provides some insight
or enables taking of some limit. When the only interpretable result we can get out of an analytical
solution is a plot, we are equally well-served by solving the differential equation numerically.

3.1.3 The balance point model and experiment

Engel, Ludington, andMarshall (Engel, et al., J. Cell Biol., 187, 81-89, 2009) measured the growth of
flagella after pH shock, which eliminates the flagella. I digitized their result from Fig. 1 of that paper
and performed a nonlinear regression using the balance point model. The details of the calculation
can be found in the companion Jupyter notebook to this lecture. The results are shown in Fig. 3 This
provides evidence that the balance point model might be describing microtubule growth dynamics.

3.1.4 Testing the balance point model

The balance point model, as we have formulated it, assumes each flagellum is independent of all
others. Therefore, if we sever one flagellum and watch it grow back, the other flagellum should be

2This is slower than exponential, since the Taylor series of ȃ/(� − ȃ ) is
∑∞

O=� ȃ O.

12

http://beaph161.caltech.edu/2019/lecture_notes/l03_cartoons.html


Figure 3: Curve fit of the balance point model to the data digitized from the Engel, et
al., paper. The best fit parameters as ǿ = �.�� µm/s and Ȁ = �.�� µm�/s.

unaffected under the model. Ludington and coworkers devised a clever experiment in which they
trapped individual Chlamydomonas cells using a microfluidic device and then used a laser to sever one
of the flagella (see Fig. 4).

syringes prior to mounting under the coverslip to induce
flagellar detachment. With such methods, the experimenter
cannot choose which flagellum will be amputated, raising
potential concerns that the flagellum that happened to pop
off might be somehow different compared to the other
flagellum. As an alternative approach, we used a femtosecond
infrared (IR) laser at 110 mW of power after the objective (see
Figure S1 available online) to cut individual flagella on trapped
cells. After laser severing, the remaining stump immediately
detached regardless of where the laser cut the flagellum along
its length (Figure 1D). The fa1mutant, which prevents flagellar
excision during pH shock [8], retained the injured flagellar
stump after laser severing of the distal portion of the flagellum
(however, these cells died without any regeneration), suggest-
ing the same pathway that mediates pH induced deflagellation
also mediates laser-induced deflagellation. Targeting the cell
body with the same laser power induced cell death, whereas
targeting anywhere outside the cell had no effect on the cell
or flagella.

Whenwe observed cells trapped in themicrofluidic chamber
following severing of one flagellum, we found that the long-
zero response was easily observed (Figures 2A and 2B). We
can thus reproduce the basic phenomenon that was previ-
ously observed in paralyzed cells trapped under coverslips
but with several important advantages: the cells are geneti-
cally WT, they are grown under continuous fluid flow, they

are not mechanically compressed, and we can choose which
flagellum to target with the laser.

Overshoot Behavior Does Not Occur in Microfluidically
Trapped Cells
With the laser-based method for measuring the long-zero
response, we next investigated a key result in the existing liter-
ature—the ability of the shortening flagellum to become
shorter than the growing flagellum, a phenomenon variously
described in the prior literature as ‘‘overshoot’’ and ‘‘under-
shoot’’ [6, 9]. These previous reports indicated that while
most cells with an amputated flagellum directly equalized the
lengths of the regenerating and uninjured flagella to roughly
2/3 full length, some fraction of the cells with an amputated
flagellum shortened their uninjured flagellum to a length signif-
icantly shorter than the regenerating flagellum, ‘‘overshooting’’
the length before eventually recovering [6]. Overshoot requires
that the two flagella be in distinct operational states when their
lengths become equal, because one continues to shorten and
one continues to grow after reaching equal lengths. An
induced shortening program can explain this observation
because a cell could independently activate shortening in
one flagellum and not the other. If not stopped in time, the
shortening would cause the long flagellum to overshoot the
length of the regenerating flagellum. But in a constitutive
model, two flagella of the same length should have the same

A B C

D

Figure 1. Microfluidic Trapping and Laser-Microsurgery Allow Selective Deflagellation of Chlamydomonas Cells

(A) A custom-designed microfluidic chamber traps motile cells and holds them in place using continuous flow of fresh media at 7 mm/s.
(B) Zoom view of the red box in (A).
(C) Side view of one cell in (B).
(D) Laser microsurgery on individual flagella induces cells to eject injured but not uninjured flagella. Red dashed line indicates the laser-targeting site. White
arrowheads indicate where the flagellum was ejected from the cell body at the flagellar base. Green arrowhead indicates where the laser cut the flagellum in
two. Cell diameter is w5 mm.

Current Biology Vol 22 No 22
2174

Figure 4: A) Schematic of microfluidic device for trapping of individual Chlamy-
domonas cells. B) Trapped cells and laser ablation setup. Figure take from Ludington,
et al., Curr. Biol., 22, 2173–2179, 2012.

Ludington and coworkers instead saw that the length of the non-severed microtubule shrank
while the other grew, as shown in Fig. 5 This means that the two are not independent.

3.1.5 Updating the balance point model

There is clearly some connection between the two flagella. What might this connection be? One
hypothesis is that the two flagella share a cytoplasmic pool of tubulin. Specifically, let O be the number
of axoneme components (which we’ll just call precursor for brevity) in the cytoplasm available for
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Figure 2. Biflagellate WT Cells Exhibit a Single, Characteristic Behavior in Response to Single Deflagellation

(A) After laser-induced deflagellation of a single flagellum, the remaining long flagellum shortens while the ejected flagellum regrows. Once the two flagella
reach roughly equal length, they then both begin to grow back to near-WT length. Times are in minutes. Red line indicates laser targeting. White arrowheads
indicate the tip of the regenerating flagellum where it is more difficult to see in these still images.
(B) The flagellar length kinetics measured over time for a single cell, shown in (A).
(C) The flagellar length kinetics for 20 cells that underwent laser-induced single deflagellation at the same time in the same chamber show a characteristic
regeneration response.
(D) The regenerating flagellum never became longer than the unamputated flagellum, as seen by plotting the regenerating flagellum’s length against the
unamputated flagellum’s length for the cells plotted in (C). The dotted line indicates where the two flagella on a single cell are equal length.

Organelle Size Equalization
2175

Figure 5: B) Results from a single laser ablation-regrowth experiment. C) The re-
sponse of 20 cells who had flagella ablated simultaneously in the same microfluidic
chamber. Figure taken from Ludington, et al., Curr. Biol., 22, 2173–2179, 2012.

incorporation into the flagella. We will again use units of µm for O. Then the amount of precursor
that an IFT train at the base of the flagellum can pick up is a function of O. This is expressed in the
cartoon in Fig. 6

including the nucleus (Fig. 1D) (25, 26), nucle-
olus (27), and vacuoles (28, 29), show a scaling
behavior with cell size; that is, larger cells have
larger organelles. However, to our knowledge, no
specific size sensor of these organelles has been
identified. Thus, size control might arise even in
the absence of specific size sensors.

One way to achieve size control is to have
stereotyped growth, by which both organelle and
cell grow according to a preset plan. This seems
to be the case with centrosome number control
because the organelle’s duplication cycle is cou-
pled to the cell cycle. In a simple case of stereo-
typed growth, both cell and organelle would
grow at constant rates. Another way to achieve
scaling is allometric growth, in which organelle
growth is some constant fraction of cell growth;
in this case, the organelle will inherently be some
proportion of cell size. This could arise if both
organelle and cell growth were dependent on
overall metabolism.

The cell can also control size by synthesizing
a limited pool of precursor (30). Assuming that
an organelle grows until the pool is depleted, size
would be readily modulated by changing the
pool size. Fixed-precursor recruitment has been
proposed as a size-control model for the bacterial
flagellar hook, in which it is suggested that the
C-ring structure of the basal body would act as a
“measuring cup” to bind a fixed quantity of hook
precursor and then release this fixed precursor set
to allow assembly (31).

To determine whether these models apply, it
is useful to monitor the growth of the organelle
along with that of the cell. Stereotyped growth is
demonstrated if the growth trajectories fit to
standard growth models (i.e., constant or expo-
nential). Otherwise, a consistent pattern of growth
among different individuals or in successive cell

divisions might also indicate a preexisting plan.
In the case of allometric growth, there would be
a correlation between instantaneous cell and or-
ganelle growth rates. Although these simple mod-
els of growth result in inherent organelle-to-cell
size scaling, they are sensitive to perturbation be-
cause they do not include mechanisms for recov-
ery. To achieve that, growth of either the cell or
organelle must be tunable in some way with re-
spect to the relative size of the organelle.

Flagellar Length Control and the
Balance-Point Model
The eukaryotic flagellum has been studied in
detail as amodel system for organelle size control
(Fig. 3A). Flagellar length is dependent on com-
peting processes of assembly and disassembly,
both of which occur at the distal flagellar tip and
rely on the microtubule motor–based transport
of structural material, or intraflagellar transport
(IFT) (32), which carries tubulin to the growing
flagellar tip (33). When flagella are severed,
they regenerate with decelerating kinetics. The
rapidity of growth back to the original size argues
against a stereotyped growthmechanism for length
control, whereas decreased growth rate as the
flagella reach their final length is suggestive of
feedback control. In the biflagellate green alga
Chlamydomonas, when one flagellum is severed,
during its regeneration the other, intact flagellum
shortens until the two flagella reach equal lengths,
at which point they resume growth together (34).
This equalization of lengths seems to indicate that
the cell “knows” how long both its flagella are.

As further evidence of flagellar length sens-
ing, the frequency of injection of IFT material
into the flagellum from the cytoplasm changes as
a function of flagellar length (35). The motors
and associated proteins that drive IFT associate

into linear arrays known as trains, and, as a re-
generating flagellum becomes longer, the trains
become smaller but more frequent. The net effect
is that the total number of individual IFTsubunits
is roughly independent of length, but this is only
achieved by having the frequency and size of the
trains vary with length. So how does the IFT
system know how long the flagellum is?

As discussed above, one way for the cell to
know organelle size is having a dedicated re-
porter molecule whose state is sensitive to or-
ganelle size. The phosphorylation state of an
aurora-like kinase depends on flagellar length
(36), so it could act as a length sensor. On the
other hand, depletion of this kinase by RNA in-
terference (RNAi) has no effect on flagellar length
(37), raising the question of whether the cell uses
the information on length encoded by the kinase.
A complete feedback loop, in which length regu-
lates the state of a kinase whose function then
modulates assembly or disassembly, remains to
be found.

One likely output of any length reporter mol-
ecule would be regulation of IFT, a critical path-
way for maintaining flagellar length. The total
quantity of IFT material per flagellum is rough-
ly constant (32, 35). Consequently, the transport
rate should be a decreasing function of length,
because in longer flagella it takes longer for the
motors to reach the tip of the flagellum and de-
liver their cargo (Fig. 3B). Furthermore, disas-
sembly rate is length-independent (38), mediated
bymicrotubule-depolymerizing kinesins (39). Com-
bined with the length-dependent assembly rate,
this constant disassembly gives a unique steady-
state solution for length (Fig. 3C). The mainte-
nance of constant total IFT protein per flagellum
is critical for this model, and it appears to be the
result of length-dependent changes in the size and

Fig. 3. Illustration of the balance-
pointmodel of flagellar length control.
(A) IFT particles (green) associated
with the flagellar basal body bind
precursor molecules from cytoplas-
mic pool (red) and are injected into
the flagellum, where they travel to
the distal tip to deliver precursor
for flagellar assembly. Flagella as-
sembly rate depends on the rate of
anterograde IFT, and the disassem-
bly rate is constant. A length sensor
may act at the flagellar tip or base
or both, and it can affect gene reg-
ulation and precursor synthesis,
injection of IFT, or assembly or dis-
assembly rates to create feedback
loops for length control. (B) Assum-
ing a constant IFT speed, v, the de-
livery frequency of IFT particles, f,
will vary inversely with flagellum
length, L. (C) In the balance-point
model, flagellar length reaches a
steady state where the assembly rate
(blue) and disassembly rate (orange) curves intersect.
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Figure 6: An updated balance point model where the cytoplasm contains a pool of
axoneme components to be transported bymotor proteins to the tip. Figure taken from
Chan and Marshall, Science, 337, 1186–1189, 2012.

We will now write down an updated balance point model for two flagella that share the same
(conserved) cytoplasmic pool of precursor. We use units of concentration that are consistent with
flagellar length. That is, concentrations are units of µm per volume. Let ℓ� and ℓ� be the lengths
of the respective microtubules. Let the anterograde IFT train speed be WB and the retrograde IFT
train speed by WS. The time it takes an IFT train to reach the tip is ℓJ/WB, and the amount of time
it takes the disassembled particles to reach the base is ℓJ/WS. We will approximate the rate of pickup
of precursor at the base as a linear function of the train density and the cytoplasmic concentration.
(Remember that the density of transporters goes like �/ℓJ.) Then, we can write delayed differential
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equations describing the length of the flagella.

Eℓ�
EU = Ȁ O(U − ℓ�/WB)

ℓ�
− ǿ , (3.6)

Eℓ�
EU = Ȁ O(U − ℓ�/WB)

ℓ�
− ǿ . (3.7)

We can write a differential equation for removal and delivery from the cytoplasm.

EO
EU = −ȀO

( �
ℓ�

+
�
ℓ�

)
+ �ǿ . (3.8)

Here, 7 is the volume in which the precursor particles reside. (This may be the entire, well mixed
cell, or some pocket in the cytoplasm where the precursors are localized.) Note that here, Ȁ has a
different meaning than before. Its units are now µm/s. Note also that even though tubulin that is
disassembled from the tip takes a time ℓJ/WS to return to the cytoplasm, there is no explicit time delay
in the O dynamics because this is a constant process.

We also have conservation of total flagellar material.

OUPU = O + ℓ� + ℓ�. (3.9)

These equations allow us to compute the steady state. From the dynamics of ℓ� and ℓ�, it is clear that
ℓ� = ℓ� = ȀO/ǿ at steady state. Inserting this expression into the conservation law gives the steady
state.

O =
ǿOUPU

ǿ + �Ȁ . (3.10)

3.1.6 Nondimensionalization of the updated balance point model

To nondimensionalize, we need to choose units for ℓ� and ℓ�, which we’ll call ℓ�, units for time, Ȓ ,
and units for the cytoplasmic number of precursors, O�. We define ℓ� = ℓ�ℓ̃�, ℓ� = ℓ�ℓ̃�, U = Ȓ Ũ, and
O = O�Õ. Then, the dynamical equations are

Eℓ̃�
ẼU =

ȀO� Ȓ
ℓ�

�

Õ
(

Ũ − ℓ�
Ȓ WB

ℓ̃�
)

ℓ̃�
− ǿ Ȓ

ℓ�
, (3.11)

Eℓ̃�
ẼU =

ȀO� Ȓ
ℓ�

�

Õ
(

Ũ − ℓ�
Ȓ WB

ℓ̃�
)

ℓ̃�
− ǿ Ȓ

ℓ�
, (3.12)

EÕ
ẼU = − Ȁ Ȓ

ℓ�
Õ(̃U)

( �
ℓ̃�

+
�
ℓ̃�

)
+

�ǿ Ȓ
O�

. (3.13)

To eliminate parameters, we choose Ȓ = ℓ�/ǿ and ℓ�/O� = Ȁ/ǿ ≡ ȁ . The dimensionless equa-
tions then become

Eℓ̃�
ẼU =

Õ(̃U − ℓ̃�/V)
ℓ̃�

− �, (3.14)

Eℓ̃�
ẼU =

Õ(̃U − ℓ̃�/V)
ℓ̃�

− �, (3.15)
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�
ȁ

EÕ
ẼU = −Õ(̃U)

( �
ℓ̃�

+
�
ℓ̃�

)
+ �, (3.16)

where we have defined V ≡ WB/ǿ . We see that the dynamical equations depend only on two param-
eters: the ratio of pick-up rate of precursor to shedding rate from the tip and the ratio of transport to
the tip and shedding rate. To connect to real units, we have to specify one of ℓ�, O�, or Ȓ in terms of ǿ ,
Ȁ , OUPU, and WB, the physical parameters of the system. We could specify O� = OUPU, giving ℓ� = ȁOUPU
and Ȓ = ȀOUPU/ǿ �. We note that we always have to make sure that we set initial conditions such that
Õ+ ȁ (ℓ̃� + ℓ̃�) < � to obey conservation of mass. Any difference of this sum from unity is indicative
of precursor material that is in transit in the flagellum, so this sum should be close to unity.

3.1.7 Adjusted balance point model and experiments.

We can again fit the adjusted balance point model to growth data from the pH shock experiment. The
result is shown in Fig. 7. We again have good agreement with the growth curve.

Figure 7: Fit of growth from the pH shock experiment using the adjusted balance
point model. The best fit parameters are ǿ = �.��� µm/min, Ȁ = �.��� µm/min,
OUPU = ��.�� µm, and ℓ�

� = ℓ�
� = �.�� µm.

We now will use these parameters to inform a severing experiment. We start with one filament
being the steady state length from the pH shock experiment. We assume that the material that was in
the severed flagellum is gone, so that the only precursor available is that which was in the non-severed
flagellum and in the cytoplasm. We then numerically solve for the dynamics. The result is shown in
Fig. 8. We see the main feature of shrinkage of the intact microtubule while the severed one grows is
captured in this model. However, the time scale is too long. This is possibly due to that fact that the
parameters were obtained from fitting the pH shock experiment, which has different conditions. We
also do not capture the regrowth of the twoflagella together thatwas observed in the experiment. This
implies that the cell is making more precursor, which we may want to include in a refinement. This
also raises the question of how the cell senses and controls the total amount of tubulin it produces.

16



Figure 8: Numerical calculation of severing experiment. The red line shows the length
of the severed flagellum and the blue the intact flagellum.

3.2 Conclusions from this exercise

In doing this exercise in mathematizing cartoons, we have produced models that can predict exper-
imental results. In doing so, we have exposed gaps in our understanding. We saw both quantitative
(wrong time scales) and qualitative (no co-growth) failures of our model. This process of proposing
physical models and devising and performing experiments to challenge them, is what learning about
physical processes in cells is all about.
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