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5 Two-state models case study: mechanosensitive ion chan-
nels

In the last lecture, we worked through some basic ideas of statistical mechanics and applied them to
ligand-receptor binding. The simple ligand-receptor binding example belongs to a class of two-state
models. As the name suggests, these are models where there are two states to consider. In the ligand-
receptor binding example, there were two states for the receptor, bound and unbound. A great many
systems may be modeled with two-state models, and we can use the tools of statistical mechanics to
derive useful expressions describing their equilibrium behavior.

In this lecture, we will investigate another two-state model, this time ion channels. Ion channels
are transmembrane protein complexes that can open and close to mediate the transport of ions in and
out of a cell. We will use mechanosensitve ion channels, such as Mscl in E. coli as our first case study
in two-state models.

5.1 Experimental analysis of ion channels
Bert Sakmann and Erwin Neher developed the patch clamp technique whereby researchers can mea-
sure current through a single ion channel. Such readings can give traces like those shown in Fig. 10.

If we consider a long time trace, we can compute Popen, the equilibrium probability that an ion
channel is open, as the total time during the trace where the channel is open divided by the total time
of the trace. The greater p., is, the more ions can flow through it per unit time.

5.2 A simple two-state model for an ion channel

In order to compute poyen for an ion channel, we define two states, open and closed. We can assign
energies to these two states, Eqpen and Egjocq. We can then write a states and weights table, as in the
previous lecture.

state | energy | statistical weight

closed | Eciosed e P Lo

open Eopen e ﬂEopen

We can then compute the probability that the channel is open as

e~ PEopen e~ P (Eopen—Ectosea)

efﬁEopen + e*ﬂEc]osed - 1 _|_ e_ﬂ(EDpen_ c]osed) :

(5.1)

Popen =

Naturally, the open and closed energies will depend on the voltage, which will give pgpe, as a function
of voltage. This is an example of a voltage gaged ion channel. But for our present case study, we
will consider mechanosensitive ion channels, where p,p., (via the energy of the two states of the
channel) depends on the fension in the membrane. So, our goal is to write

Eopen = Eopen ( }/)7 (52)
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Figure 10: Patch clamp recordings of a single sodium ion channel in a reconstituted
lipid bilayer. A. Recordings of current taken at different voltages. For a voltage of high
magnitude, the channel has a constant current, indicating it is almost always open. For
voltage of low magnitude, it is closed. B. Detail of the trace at -95 mV. The bottom
trace shows a digitized version, displaying when the channel is open or closed. Figure
taken from Keller, et al., J. Gen. Physiol., 88,1-13,1986..
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where y is the membrane tension, and then compute ppe, using the Boltzmann weights.

Before we proceed to this calculation, we first provide some context as to why a cell would need
mechanosensitive ion channels to deal with sudden changes in pressure due to osmotic shock.

5.3 Osmotic pressure

Osmotic pressure, is a pressure exerted across a membrane due to differences in concentration of
solute on either side of the membrane. In the case of Mscl, the solute is positive ions. We can under-
stand osmotic pressure by looking at the thermodynamics of dilute solutions. The chemical potential
of water on either side of a cell membrane, must be equal at equilibrium. That is, the chemical poten-
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tial of water in the cell must equal that in the environment.
I
HiLo = Lo (5.3)

In the previous lecture in equation (4.56), I stated without proof (see section 6.2.2 of PBoC2) that the
chemical potential of water in a dilute solution is

Ko, T) = ﬂ%zo(Pa T) — kgTx, (5.4)

where x is the mole fraction of solute molecules. Note that the chemical potential is in general a
function of pressure and temperature. So, at equilibrium, we have

,u%zo @cellv n - kBTxcell - ﬂ%zo (penv; n - kBTxenv- (55)
This implies that
/40]-[20 (pcellv T) - ,“%20 (penw T) = kBT(xcell - xenv)~ (56)

Note that we have assumed thermal equilibrium. Then, if the concentration of solute molecules in
the cell is different than in the environment, X e 7 Xenv, then the inside and outside of the cell must
have different pressure. This difference in pressure, I1 = pcen — Penv, is called the osmotic pressure.
To proceed, we can expand the left hand side of the above equation about IT = peey — Peny = 0 to
first order to get

oul
/‘gzo(pcellaT) - ﬂ%zo(pean) ~ <a;20> II. (57)
The differential in this equation is the volume of a water molecule, as we know from thermodynamics.?
oul
aZZO =vmo = V/Nuo. (5.8)
Thus, we have
V/NH2O I = kg T(xcell - xenv) . (59)

Recall that xcen ~ NI /Ny, 0. Using this fact, we have

sol
IT= kBT(Ccell - Cenv)y (5.10)
were ¢ represents a concentration, Nyopue/ V.

The typical concentration of positive ions in E. col7 is approximately 200 mM (BNID 104049),
or about 0.1 molecules per cubic nanometer. Thus, the osmotic pressure in an E. coli cell, assuming
that ceny &~ 0 (which would be the case if you put a cell in deionized water) is

IT ~ 4 pN-nm x 0.1 nm > = 0.4 pN/nm”. (5.11)

Given the conversion that 1 pN/nm? = 10 atm, the osmotic pressure in E. coli in deionized water
is approximately 4 atm. The cell can handle the pressure with its cell wall, but you can imagine that
if you rapidly changed the ionic conditions outside the cell, it suddenly has to withstand a very large
pressure, which can lead to the cell bursting. Mechanosensitive ion channels respond to increased
membrane tension as a result of osmotic shock to let ions in or out to relieve osmotic pressure.

3To see this, consider the total Legendre transform of the free energy, 0 = —Sd7T+ Vdp —Ndpu,
and compute (Ou /Op)r.
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5.4 Tension and the ion channel

When the ion channel is closed, the membrane is more stretched than when it is open. This is because
aclosed channel pulls the membrane more taught, and an open membrane can relieve the tension. The
opening of the channel leads to a change in total area of the surface of the cell, AA. We should take
into account the areal stretch of the membrane when considering the energetics of channel opening.
So, we have B! = E ..n(AA), and define AA = O for the closed state. We write E5"* a5 a
Taylor series in AA about AA = 0. To first order,

Estrelch — Estrelch —y AA. (512)

open closed

It is clear from the Taylor expansion that y is a tension (with dimension force per length). We have
chosen a negative sign to ensure that y is positive under our definition that AA is positive. The
stretching energy of the open state is less than the closed state. Thus, we have

Eciosed = E(c)losed + Ezsr(;c:éclll’ (513)
Eopen = Egpen + Ez;iilecclll -7 AA. (514)

We have divided the energy of a state into the energetics associated with the state of the channel itself|
marked by a naught superscript, and the energy associated with stretching the membrane. If we define

E¥ oq T ESeh a5 our reference energy, and ¢ = E(O)pen — £ eq> OUr updated states and weights table
is as follows.

state energy statistical weight

closed 0 1

open | € — yAA | e Ple-rad)

We can now write our updated expression for the probability of the ion channel being open as a
function of the membrane tension y.

efﬁ(gf}/AA)

popen == m (5.15)

5.5 Determining the parameters

As we have seen again and again in the course, physical modeling of cellular systems exposes measur-
able parameters and testable hypotheses. So, can we do a patch clamp experiment to determine the
parameters? Perozo and coworkers (Perozo, et al., MVat. Struct. Biol., 9, 696-703,2002) did just that.
They adjusted the applied pressure across a reconstituted membrane and could measure the current
through a single Mscl channel. They then computed pqpen as I described above for the voltage gated
ion channel. I digitized the data from their measurements and show them in Fig. 11.

As we will derive when we do membrane mechanics later in the course, the tension y in the
membrane is directly proportional to the applied pressure. Defining the constant of proportionality
to be a, we can write the theoretical curve describing the experimental data as

e—ﬂ(e—apAA)
Popen = 1+e—/}(g—apAA)’

(5.16)
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Figure 11: Digitized data from a patch clamp experiment from Perozo, et al., Vat.
Struct. Biol., 9, 696-703, 2002.

where p is the applied pressure. This expression has five parameters, f, a, AA, Egpen, and £,
where the last two are present in €. As we can already see, the equation we have derived for popen
can only delineate the difference in the open and closed energies of the ion channel, parametrized by
€. The experiments were done at room temperature (about 295 K), so we know  ~ 1/(4 pN-nm).
We might know what A A is from structural studies, but let’s assume we do not know it. By defining

a = a AA, and re-writing Popen,

e_ﬁgeﬁap

Dopen = (5.17)

1 +e Peehar’
we see that we can only determine two constants from measurements of pgpeq (given that we know
B), €, the difference in energy of the open and closed states of the channel in the absence of tension,
and a, which describes how tension on the membrane serves to open channels.

We can perform a nonlinear regression to obtain estimates for the parameters f ¢ and fa.* The
code to do the regression appears below (with some ETEX-based problems with displaying unicode
at the very end of the script). To do the regression, we use least squares, as implement in SciPy.
Performing the regression, we get that the most probable parameter values are f ¢ = 9.2 and ffa =
0.3 (mm Hg)~!. The result is shown in Fig. 12.

Interestingly, we were able to obtain that absence tension on the membrane, the energy difference
between the open and closed state is about 9 k7. This gives an open probability in the absence of
tension of about 10~#, which would be difficult to observe experimentally by just measuring current
through an un-tensed channel. This also means that in the absence of tension, the channel is almost
always closed. It takes tension to open it, hence the name mechanosensitive.

This exercise has shown the power of two-state models in helping to set up experiments to probe
the physical nature of ion channels.

*I make the usual statements about the perils of directly doing a maximum likelihood estimate for
the parameters.
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Figure 12: Curve fit of the Perozo, et al., patch clamp data.

import numpy as np
import scipy.optimize
import bokeh.plotting

# The data sets
pressure = np.array([5, 10, 15, 20, 25, 30, 35, 40])
p_open = np.array([0.008, 0.008, 0.008, 0.048,

0.126 ,0.403 ,0.734 ,0.939])

# Define theoretical p_open

def p_open_theor (pressure, beta_epsilon, beta_a):
"""Theoretical p_open"""
return 1 / (1 + np.exp(beta_epsilon - beta_a * pressure))

s| # Define residuals

def resid(params, pressure, p_open):
# Unpack parameters
beta_epsilon, beta_a = params

# Compute residuals
return p_open - p_open_theor (pressure, beta_epsilon, beta_a)

3| # Bound on parameters, first lower bounds, then upper

bounds = ((-np.inf, 0), (np.inf, np.inf))

# Initial guess
pO = np.array([0.1, 0.1])

# Perform least squares
res = scipy.optimize.least_squares(resid,
PO,
args=(pressure, p_open),
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bounds=bounds)

s|# Put out the optimal parameters

beta_epsilon, beta_a = res.x

# Generate smooth curve
pressure_smooth = np.linspace(0, 70, 200)
p_open_fit = p_open_theor(pressure_smooth, beta_epsilon, beta_a)

2| # Make the plot
slp = bokeh.plotting.figure(plot_width=500,

plot_height=300,
x_axis_label="'pressure (mm Hg)',
y_axis_label="'open probability')

71p.line(pressure_smooth, p_open_fit, line_width=2, color='orange')

p.circle(pressure, p_open)
bokeh.io.show(p)

# Report results
print("""Most probable fit parameters:pe

{0:.2F}B
a: {1:.2f} (mm Hg)R*""" format(beta_epsilon, beta_a))

perozo_regression.py
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