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6 Allostery and the Monod-Wyman-Changeux model

In a previous lecture, we used the theory of equilibrium statistical mechanics to study ligand receptor
binding. We then applied a similar theoretical approach to treat a mechano-sensitive ion channel
behavior. In this lecture, we extend that ligand-receptor binding theory to include more states beyond
“bound” and “unbound.” As we work through the theory, we will discover some of the basic ideas
behind allostery and introduce the famous Monod-Wyman-Changeux (MWC) model.

6.1 Allostery

Consider an enzyme that has two binding sites. One site is involved in its activity, say with binding
its target substrate. We will call this the active site. The other binding site binds some other ligand.
Important, when this other site is bound, the activity of the active site is either positively or negatively
affected. This phenomenon, where binding of one site of a protein or protein complex affects the
activity of another is called allostery.

We can explore allostery using the same states-and-weights approach as with the vanilla ligand-
receptor binding we have already studied. In that case, we had two states, bound and unbound. Now,
we also specify whether or not the receptor is active of inactive. So, there are now four states, unbound
and inactive, unbound and active, bound and inactive, and bound and active. Each of these four states
has an energy associated with it.

It is more convenient to treat our system to be only the receptor and possibly the single ligand
bound to it. In this case, the energy of the bound state is supplemented with the chemical potential
associated with taking the ligand out of solution, as we showed in lecture 4. That is, we subtract
U = po + kpTInx, where x is the mole fraction of ligand, from the energy to get the statistical
weight. This is shown in the states and weights table below.

state description energy | statistical weight
- unbound, inactive | Ey; e P
- unbound, active Eua e PEu
- bound, inactive Ey; xe— P (Ei—to)
- bound, active Ep, xe P En—Ho)

We are most interested in the probability that the receptor is active, which we can compute from
the states and weights table.

sum of weights of active states
sum of all weights

Dactive =

efﬂEua + xefﬁ(Ebafﬂ())

= (6.1)

o e—/}Eui _|_ e—ﬂEua +xe_ﬂ(Ebi—ﬂo) _|-xe_ﬂ(Eba—#o) ’
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This can be simplified be defining dissociation constants for ligand-receptor binding when the recep-
tor is respectively in the inactive and active states,

Ki = puo e PEutuo=Er) (6.2)

Ko = py,oe/Buttomti), (6.3)

where pyy, ¢ is the number density of solvent. We can also use it to define the concentration of ligand
as ¢ = py,oX. Then, the expression for the probability that the receptor is active is

1+C/Kda
1 + C/Kda + e_ﬂAE” (1 + %(C/Kda))

Pactive =

o 1+ C/Kda
1+ ¢/Kgu + e PAE 4 e~ PBE (¢ /Ky,)'

(6.4)

where AE, = E; — E,, is the difference in energies of the inactive and active states in the absence
of ligand and AE, = Ey,; — Ey, is the difference in energies of the inactive and active states when the
receptor is bound to ligand.

To understand this expression, we can consider the small and large ¢ limits. In the small ligand
concentration limit, we have

1

—_— 6.5
1 + e FAbR (6.5)

small ¢ :  pactive =

which is what we expect from a two-state model for receptor activity that does not include binding.
We will consider this to be the base case of activity, that is the probability that the receptor is active
in absence of ligand. In the limit of large ligand concentration, we have

1 1
I

large ¢ :  Pactive = (6.6)

So, if the ratio of the dissociation constants, K, /Ky, is less than one, i.e., if the ligand binds more
tightly to the active state than to the inactive state, the activity of the receptor is enhanced by the
ligand. This is allostery; binding of a ligand at one site of an enzyme enhances activity at another.

To better visualize the how p,ve varies with ligand concentration, see Fig. 13 for a plot.

It is also useful to quantify how effective allosteric activation can be compared to the base case of
no ligands. The maximum fold change in activity compared to the base case if found by dividing the
large c limit of p,.ive by the base case pacive-

large ¢ limit of paciive 1+ e~ PAE, 1+ e—PAE,
small ¢ limit of pocive 1 + Ku o—pak, T 14 e PRE
di

max fold change = (6.7)

So, the maximum achievable fold change is set by 1 + e #Fs. The larger the energy difference
between the active and inactive unbound states, the more effective the ligand-mediated allosteric ac-
tivation.

The Monod-Wyman-Changeux model. The example we just worked out is an example of
a Monod-Wyman-Changeux (MWC) model. The main idea behind the MWC model is the presence
of two states, whether or not ligand is bound, and that ligand can bind in either configuration. As we
have seen, ligand binding shifts the equilibrium between the two states. It is a simple and beautiful
idea, and we will come to see that it is very powerful and ubiquitous throughout cell biology.
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Figure 13: A sketch of the probability that the receptor is active as a function of ligand
concentration.

6.2 Ligand-gated ion channels

In the last lecture, we considered the statistical mechanics of a mechano-sensitive ion channel. We
will not turn to ion channels that are ligand-gated, and treat them using the MWC framework. That
is, the ion channel has two states, open and closed, and the energetics of ligand binding in those two
states varies.

In our model, we will assume that there are two binding sites for ligands on the channel. We
may therefore have four binding states, no sites bound, site one bound, site two bound, and both
sites bound. With the two states of the ion channel, open and closed, that leaves eight total states to
enumerate. We will assume that both binding sites have the same energy, such that the single bound
open states have the same energy, as do the singly bound closed states. We again use the convenient
method of including the chemical potential of the ligand in the statistical weights so we do not need
to explicitly count spatial configurational states of the ligand. With these considerations in mind, we
can write the states-and-weights table.
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state energy statistical weight

" 2E, e 2PEuw

O
'I Eye + Epe | xe  PEctEx—sy)

Euc + Ebc xe_ﬁ(Euc“l‘Ebc_ﬂO)

2Ep. x2 =28 (Eve—py)

2E, e 2PEw

Euo + EbO xe_ﬂ(Euo"FEbo_ﬂO)

Euo + EbO xe_ﬁ(Euo“l'Ebo_ﬂO)

@ O
" 2E, x% e 2P (E—to)

For the case of this ion channel, the “active state” is the open state. So, we wish to compute
Dopen- We directly read off the states and weights table to compute it.

sum of weights of open states

Popen = sum of all weights
e 2PEw 4 2x e F(EuwtEw—Ho) | x2 =28 (Evo—Ho)
T e 2PEw 4 2xe B(EutEn—to) 4 x2e—28(Eoe—io) 4 e=2BEw 4 2x e B (EwtEn—i) 4 x2 =28 (Ew—H)
1+ 2xe PBro—Ew—to) 4 x2 e=28 (Evo—Ew—H,)
T 1+ 2xe PEwEuto) 4 x2e 2P (B—Ew—to) 4¢P (1 4 2xe P Ex—Euho) 4 32 ¢ 2P e —Futo)
_ (1+c¢/Ka)®
(1-+ ¢/Kao) +e02% (14 2 (c/Kan))
_ (1+¢/Kg)’ (6.8)
(1+ ¢/Kgo) 4 (€745 4 e~ a8 (¢ /Ky))*
where
AE, = Eyc — Eyo, (6.9)
AEy, = Epc — Eo, (6.10)
Kao = prysg e/ Eotho—to), (6.11)
Ko = py,ce P Eetrohi), (6.12)
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The functional form is similar to what we got in the allosteric ligand-receptor binding case, but with
squared terms. The high and low ligand concentration limits are similar, except again with squared
terms.

1

Small C . Pactive = m, (6.13)
largec: p ! ! (6.14)
. active — - — . .
1+ (La e*ﬂAEu)z L4 em2a%
Ky
We can thus determine the dynamic range, r, of the channel.
max min 1 1
F'= Popen — Popen = (6.15)

2 —2BAE, "
1+ (%“c’e—ﬂAE") I+e
If we have N ion channels in a cell, the dynamic range of the entire cell is 7.y = Nr. The dynamic
range is large for large A E, (the energy of the closed state is much higher than that of the open state
in the absence of ligand) and for small K4,/Kq. (the ligands bind with much greater affinity to the
open state).

6.2.1 The logistic equation and the Bohr parameter

The functional forms of the expressions for pv. in the allosteric receptor example and for popen
in the ligand-gated ion channel example are similar. In fact, we can re-write the functional form in
terms of the logistic equation we have seen for two-state models. After all, these models are two-state
models (active/inactive or open/closed); the added wrinkle is that ligand concentrations affect the
probabilities of the respective states. For the ion channels, we can write

1

popen - m, (616)

a logistic equation,’ where F(c) is the Bohr parameter.® The Bohr parameter for the ligand-gated

ion channel we have been considering is

(1 + C/ Kdo)z

« 2
(¢/Kw))

do
ch
Note that the Bohr parameter resembles the form of a chemical potential. The ligand-less two state
model energy is adjusted by a correction related to the concentration of ligand and the respective
binding energies.

F(c)= AE, + kgT In (6.17)

(1+

6.2.2 Data collapse

Considering that all two-state models, including those modeled using MWC considerations, have an
active (or open) probability given by the logistic equation, all p,ive curves should fall on the same line

5Also called a Fermi-Dirac equation.

The Bohr parameter is named after Christian Bohr, the father of Niels Bohr. He described what
is now called the Bohr effect, in which presence of CO, decreases hemoglobin’s oxygen binding effi-
ciency. The Bohr parameter arises in that case as well.
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when plotted against the Bohr parameter. So, if we could determine AE),, Kq,, and Ky, by performing
experiments and statistical inference, we can compute the Bohr parameter F(c) for each value of c.
If we then plot the measured p,;\e versus F(c), all points should fall along the logistic curve given by
(6.17).

To investigate this, we will use data acquired in Henry Lester’s lab on the nicotinic acetylcholine
receptor/ion channel. This ion channel is perhaps the best studied ion channel in nature, certainly of
importance in the human nervous system. Its structure is shown in Fig. 14. The experimenters per-
formed voltage clamp experiments to get open probabilities of the ion channels as a function of ligand
(in this case acetylcholine, abbreviated ACh). They performed mutations of the different domains
of the receptor and repeated the experiments, showing different responses to ligand. Their original
figure is shown in Fig. ??.
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Figure 14: Left, a schematic of the nicotinic acetylcholine receptor and ion channel.
Adapted from Fig. 7.26 of PBoC2. Right, voltage clamp experimental data for receptors
containing various mutations. Figure taken from Labarca, et al., Vature, 376, 514-516.

I digitized these data and performed a maximum likelihood estimate to get the necessary param-
eters. I then computed the Bohr parameter for each data point and plotted all data together on one
plot. The result is shown in Fig. 15. The code to perform this analysis is at the end of this lecture.

6.3 Information and channel capacity

Ligand-gated ion channels sense the surroundings. If a channel is open, it is indicative that there are
likely more ligands around than when it is closed. So, we may ask, how much snformation about the
ligand concentration does the open or closed states of channels give the cell? Specifically, say we
have N, ion channels in a cell and that 7 of them are open. What can we learn about the ligand
concentration c¢ given that we know 7 and N?

We have already dabbled in information theory when we derived the Boltzmann distribution.
We will now apply these ideas to quantify how much information the channel state gives about the
ligand concentration. That is, we seek the mutual information between the open-or-closed state of
the channels and the ligand concentration.

The mutual information between two random variables X and Y'is the entropy loss that is incurred
by knowing Y.

1(X;Y) = SIX] - SIX | V], (6.18)
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Figure 15: Top, results of maximum likelihood estimate curve fits of the data from
Labarca, et al., Mature, 376, 514-516. Bottom, all data sets plotted against the Bohr
parameter. The logistic curve is shown in black.

where we have introduced the notion of conditional entropy,

SX| Y] =Y P0) ( > P(x|y)log, P(x| y)) : (6.19)
y X

The conditional entropy is then the entropy associated with the distribution P(X | ), averaged over
Y. The mutual information is then

I(X;Y) = = P(x)log, P(x) + > P(y) (Z P(x | y)log, P(x | y)) : (6.20)

It can be shown that the mutual information is symmetric, such that I(X; Y) = I(Y; X).

In the present case, we take X = c and Y = n. I will not work out the mathematical details here
(see the Marzen and Phillips paper), but will state without proof that the maximum mutual informa-
tion possible, called the channel capacity, is approximately (in the low noise limit)

1
Lope ~ log, (27[ = /dn an) , (6.21)
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where o, is the standard deviation of P(n | ¢,N). We know that P(n | ¢, N) describes a Binomial
distribution, where the probability that a given channel is open is given the expression we derived in
(6.8). The standard deviation is then that for a Binomial distribution,

0'31 = NpPopen(1 — Popen)- (6.22)

Using this expression and evaluating the integral gives

[2N /. _ . ~
Lop: ~ log, ( e (sm b /Pors, — sin ! ﬁ/PBrEQn)) , (6.23)

which is related to the dynamic range, since the inverse sine function sin~' (x) is monotonic on the
interval 0 < x < 1.

So, the bigger the dynamic range, the larger the channel capacity, and the more then cell and
“know” about its surroundings. As we have seen, having multiple ligands bind to the channel to con-
trol the gating where binding it tighter when the channel is open, boosts the dynamic range, therefore
increasing the channel capacity.

import numpy as np
import pandas as pd

3| import scipy.optimize

import bokeh.plotting
import bokeh.io

# Load 1in data set
df = pd.read_csv('lester_acetylcholine.csv')

# Get units in molar
df['[ACh] (M)'] *= 1le6

;)df = df.rename(columns={'[ACh] (M)': '[ACh] (uM)'})

# Set up data frame with MLE results
cols = ['Kd_open', 'Kd_closed', 'beta_deltaE', 'genotype']

71df_best_fit = pd.DataFrame(columns=cols)

def p_open_theor(c, log_Kd_open, log_Kd_closed, beta_deltaE):
"""Theoretical curve for open probability"""
Kd_open = np.exp(log_Kd_open)
Kd_closed = np.exp(log_Kd_closed)
a = (1 + c/Kd_open)*xx2
b = (1 + c/Kd_closed)**2

return a / (a + b *x np.exp(-beta_deltaE))

def resid(params, c, p_open):
"""Residual from theoretical for use in least squares."""
return p_open - p_open_theor(c, *params)
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s|# Set up plots

| p = bokeh.plotting.figure(plot_height=300,

37 plot_width=600,

38 x_axis_Tlabel="'[ACh] (uM)',

39 y_axis_label="'open probability',

40 Xx_axis_type="'log')

4| p2 = bokeh.plotting.figure(plot_height=300,

") plot_width=600,

43 x_axis_label="'Bohr parameter (units of KkT)

44 y_axis_label="'open probability')
s|# Theoretical logistic curve

w7|F = np.linspace(-6, 6, 200)
s|p2.line(F, 1 / (1 + np.exp(-F)), color='black', line_width=2)

siicolors = bokeh.palettes.d3['Categoryl0'][10]
s2| Ach_smooth = np.logspace(-4, 3, 200)

so) # Initial guess for curve fits
s51p@ = np.array([-1, 0, -6])

s71 for i, gtype in enumerate(df['genotype'].unique()):

58 # Load in data for one genotype

59 sub_df = df.loc[df['genotype']==gtype, :]

60 c, p_open = sub_df['[ACh] (uM)'].values, sub_df['p_open'].values
61

62 # Perform curve fit

63 res = scipy.optimize.least_squares(resid, p0, args=(c, p_open))
64

65 # Store results

66 Kd_open, Kd_closed = np.exp(res.x[:2])

67 beta_deltaE = res.x[2]

68 df_res = pd.DataFrame(columns=cols,

69 data=[[Kd_open, Kd_closed, beta_deltakE,
gtypel])

df_best_fit = df_best_fit.append(df_res, dignore_index=True)

<

=

# Plot fits

p.line(Ach_smooth,
p_open_theor (Ach_smooth, *res.x),
line_width=2,

76 color=colors[i])

77 p.circle(c, p_open, color=colors[i], legend=gtype)

NN NN
A A o N

79 # Plot using Bohr parameter (data collapse)

80 a = (1 + c/Kd_open)**2

81 b = (1 + c/Kd_closed)**2

82 F = beta_deltaE + np.log(a) - np.log(b)

83 p2.circle(F, p_open, color=colors[i], legend=gtype)
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5| p. legend.location = 'bottom_right'

p2.legend.location = 'bottom_right'

# Save as SVG

p.output_backend = 'svg'

p2.output_backend = 'svg'

bokeh.io.export_svgs(p, filename='lester_mle.svg')
bokeh.io.export_svgs(p2, filename='lester_data_collapse.svg')

lester curves.py
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