
BE/APh 161: Physical Biology of the Cell
Justin Bois

Caltech

Winter, 2019

This document was prepared at Caltech with financial support from the Donna and Benjamin M.
Rosen Bioengineering Center.

© 2019 Justin Bois, except for figures taken from literature sources.
This work, with the exception of figures from literature sources, is licensed under a Creative

Commons Attribution License CC-BY 4.0.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


6 Allostery and the Monod-Wyman-Changeux model

In a previous lecture, we used the theory of equilibrium statistical mechanics to study ligand receptor
binding. We then applied a similar theoretical approach to treat a mechano-sensitive ion channel
behavior. In this lecture, we extend that ligand-receptor binding theory to includemore states beyond
“bound” and “unbound.” As we work through the theory, we will discover some of the basic ideas
behind allostery and introduce the famous Monod-Wyman-Changeux (MWC) model.

6.1 Allostery

Consider an enzyme that has two binding sites. One site is involved in its activity, say with binding
its target substrate. We will call this the active site. The other binding site binds some other ligand.
Important, when this other site is bound, the activity of the active site is either positively or negatively
affected. This phenomenon, where binding of one site of a protein or protein complex affects the
activity of another is called allostery.

We can explore allostery using the same states-and-weights approach as with the vanilla ligand-
receptor binding we have already studied. In that case, we had two states, bound and unbound. Now,
we also specifywhether or not the receptor is active of inactive. So, there are now four states, unbound
and inactive, unbound and active, bound and inactive, and bound and active. Each of these four states
has an energy associated with it.

It is more convenient to treat our system to be only the receptor and possibly the single ligand
bound to it. In this case, the energy of the bound state is supplemented with the chemical potential
associated with taking the ligand out of solution, as we showed in lecture 4. That is, we subtract
Ȋ = Ȋ � + L#5 MO Y, where Y is the mole fraction of ligand, from the energy to get the statistical
weight. This is shown in the states and weights table below.

state description energy statistical weight

unbound, inactive &VJ F−Ȁ &VJ

unbound, active &VB F−Ȁ &VB

bound, inactive &CJ YF−Ȁ (&CJ−Ȋ �)

bound, active &CB YF−Ȁ (&CB−Ȋ �)

We are most interested in the probability that the receptor is active, which we can compute from
the states and weights table.

QBDUJWF =
sum of weights of active states

sum of all weights

=
F−Ȁ &VB + YF−Ȁ (&CB−Ȋ �)

F−Ȁ &VJ + F−Ȁ &VB + YF−Ȁ (&CJ−Ȋ �) + YF−Ȁ (&CB−Ȋ �)
. (6.1)
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This can be simplified be defining dissociation constants for ligand-receptor binding when the recep-
tor is respectively in the inactive and active states,

,EJ = ȏ )�0 F−Ȁ (&VJ+Ȋ �−&CJ), (6.2)

,EB = ȏ )�0 F−Ȁ (&VB+Ȋ �−&CB), (6.3)

where ȏ )�0 is the number density of solvent. We can also use it to define the concentration of ligand
as D = ȏ )�0Y. Then, the expression for the probability that the receptor is active is

QBDUJWF =
� + D/,EB

� + D/,EB + F−Ȁ ɔ&V
(

� + ,EB
,EJ

(D/,EB)
)

=
� + D/,EB

� + D/,EB + F−Ȁɔ&V + F−Ȁɔ&C(D/,EB)
, (6.4)

where ɔ&V = &VJ − &VB is the difference in energies of the inactive and active states in the absence
of ligand and ɔ&C = &CJ − &CB is the difference in energies of the inactive and active states when the
receptor is bound to ligand.

To understand this expression, we can consider the small and large D limits. In the small ligand
concentration limit, we have

small D : QBDUJWF =
�

� + F−Ȁɔ&V
, (6.5)

which is what we expect from a two-state model for receptor activity that does not include binding.
We will consider this to be the base case of activity, that is the probability that the receptor is active
in absence of ligand. In the limit of large ligand concentration, we have

large D : QBDUJWF =
�

� + ,EB
,EJ

F−Ȁɔ&V
=

�
� + F−Ȁɔ&C

. (6.6)

So, if the ratio of the dissociation constants, ,EB/,EJ, is less than one, i.e., if the ligand binds more
tightly to the active state than to the inactive state, the activity of the receptor is enhanced by the
ligand. This is allostery; binding of a ligand at one site of an enzyme enhances activity at another.

To better visualize the how QBDUJWF varies with ligand concentration, see Fig. 13 for a plot.

It is also useful to quantify how effective allosteric activation can be compared to the base case of
no ligands. The maximum fold change in activity compared to the base case if found by dividing the
large D limit of QBDUJWF by the base case QBDUJWF.

max fold change =
large D limit of QBDUJWF
small D limit of QBDUJWF

=
� + F−Ȁɔ&V

� + ,EB
,EJ

F−Ȁɔ&V
=

� + F−Ȁɔ&V

� + F−Ȁɔ&C
. (6.7)

So, the maximum achievable fold change is set by � + F−Ȁɔ&V . The larger the energy difference
between the active and inactive unbound states, the more effective the ligand-mediated allosteric ac-
tivation.

TheMonod-Wyman-Changeuxmodel. The example we just worked out is an example of
a Monod-Wyman-Changeux (MWC) model. The main idea behind the MWCmodel is the presence
of two states, whether or not ligand is bound, and that ligand can bind in either configuration. As we
have seen, ligand binding shifts the equilibrium between the two states. It is a simple and beautiful
idea, and we will come to see that it is very powerful and ubiquitous throughout cell biology.
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This can be simplified be defining dissociation constants for ligand-receptor binding when the recep-
tor is respectively in the inactive and active states,
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� + D/,EB + F−Ȁ ɔ&V
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� + ,EB
,EJ

(D/,EB)
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� + D/,EB

� + D/,EB + F−Ȁɔ&V + F−Ȁɔ&C(D/,EB)
, (3.4)
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large D : QBDUJWF =
�

� + ,EB
,EJ

F−Ȁɔ&V
=

�
� + F−Ȁɔ&C

. (3.6)

So, if the ratio of the dissociation constants, ,EB/,EJ, is less than one, i.e., if the ligand binds more
tightly to the active state than to the inactive state, the activity of the receptor is enhanced by the
ligand. This is allostery; binding of a ligand at one site of an enzyme enhances activity at another.
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no ligands. The maximum fold change in activity compared to the base case if found by dividing the
large D limit of QBDUJWF by the base case QBDUJWF.

max fold change =
large D limit of QBDUJWF
small D limit of QBDUJWF

=
� + F−Ȁɔ&V

� + ,EB
,EJ

F−Ȁɔ&V
=

� + F−Ȁɔ&V

� + F−Ȁɔ&C
. (3.7)

So, the maximum fold change is set by � + F−Ȁ ɔ&. The larger the energy difference between the
active and inactive unbound states, the more effective the ligand-mediated allosteric activation.

Plots of QBDUJWF as a function of ligand concentration, and also the maximum fold change as a func-
tion of
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Figure 13: A sketch of the probability that the receptor is active as a function of ligand
concentration.

6.2 Ligand-gated ion channels

In the last lecture, we considered the statistical mechanics of a mechano-sensitive ion channel. We
will not turn to ion channels that are ligand-gated, and treat them using the MWC framework. That
is, the ion channel has two states, open and closed, and the energetics of ligand binding in those two
states varies.

In our model, we will assume that there are two binding sites for ligands on the channel. We
may therefore have four binding states, no sites bound, site one bound, site two bound, and both
sites bound. With the two states of the ion channel, open and closed, that leaves eight total states to
enumerate. We will assume that both binding sites have the same energy, such that the single bound
open states have the same energy, as do the singly bound closed states. We again use the convenient
method of including the chemical potential of the ligand in the statistical weights so we do not need
to explicitly count spatial configurational states of the ligand. With these considerations in mind, we
can write the states-and-weights table.
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state energy statistical weight

�&VD F−� Ȁ &VD

&VD + &CD Y F−Ȁ (&VD+&CD−Ȋ �)

&VD + &CD Y F−Ȁ (&VD+&CD−Ȋ �)

�&CD Y� F−� Ȁ (&CD−Ȋ �)

�&VD F−� Ȁ &VP

&VP + &CP Y F−Ȁ (&VP+&CP−Ȋ �)

&VP + &CP Y F−Ȁ (&VP+&CP−Ȋ �)

�&CP Y� F−� Ȁ (&CP−Ȋ �)

For the case of this ion channel, the “active state” is the open state. So, we wish to compute
QPQFO. We directly read off the states and weights table to compute it.

QPQFO =
sum of weights of open states

sum of all weights

=
F−� Ȁ &VP + �Y F−Ȁ (&VP+&CP−Ȋ �) + Y� F−� Ȁ (&CP−Ȋ �)

F−� Ȁ &VD + �Y F−Ȁ (&VD+&CD−Ȋ �) + Y� F−� Ȁ (&CD−Ȋ �) + F−� Ȁ &VP + �Y F−Ȁ (&VP+&CP−Ȋ �) + Y� F−� Ȁ (&CP−Ȋ �)

=
� + �Y F−Ȁ (&CP−&VP−Ȋ �) + Y� F−� Ȁ (&CP−&VP−Ȋ �)

� + �Y F−Ȁ (&CP−&VP−Ȋ �) + Y� F−� Ȁ (&CP−&VP−Ȋ �) + F−Ȁɔ&V
(
� + �Y F−Ȁ (&CD−&VD−Ȋ �) + Y� F−� Ȁ (&CD−&VD−Ȋ �)

)

=
(� + D/,EP)

�

(� + D/,EP)
� + F−� Ȁɔ&V

(
� + ,EP

,ED
(D/,EP)

)�

=
(� + D/,EP)

�

(� + D/,EP)
� + (F−Ȁɔ&V + F−Ȁɔ&C(D/,EP))

� (6.8)

where

ɔ&V = &VD − &VP, (6.9)

ɔ&C = &CD − &CP, (6.10)

,EP = ȏ )�0 F−Ȁ (&VP+Ȋ �−&CP), (6.11)

,ED = ȏ )�D F−Ȁ (&VD+Ȋ �−&CD). (6.12)
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The functional form is similar to what we got in the allosteric ligand-receptor binding case, but with
squared terms. The high and low ligand concentration limits are similar, except again with squared
terms.

small D : QBDUJWF =
�

� + F−� Ȁɔ&V
, (6.13)

large D : QBDUJWF =
�

� +
(

,EP
,ED

F−Ȁɔ&V
)� =

�
� + F−� Ȁɔ&C

. (6.14)

We can thus determine the dynamic range, S, of the channel.

S = QNBY
PQFO − QNJO

PQFO =
�

� +
(

,EP
,ED

F−Ȁɔ&V
)� − �

� + F−� Ȁɔ&V
. (6.15)

If we have / ion channels in a cell, the dynamic range of the entire cell is SDFMM = /S. The dynamic
range is large for large ɔ&V (the energy of the closed state is much higher than that of the open state
in the absence of ligand) and for small ,EP/,ED (the ligands bind with much greater affinity to the
open state).

6.2.1 The logistic equation and the Bohr parameter

The functional forms of the expressions for QBDUJWF in the allosteric receptor example and for QPQFO
in the ligand-gated ion channel example are similar. In fact, we can re-write the functional form in
terms of the logistic equation we have seen for two-state models. After all, these models are two-state
models (active/inactive or open/closed); the added wrinkle is that ligand concentrations affect the
probabilities of the respective states. For the ion channels, we can write

QPQFO =
�

� + F−Ȁ '(D) , (6.16)

a logistic equation,5 where '(D) is the Bohr parameter.6 The Bohr parameter for the ligand-gated
ion channel we have been considering is

'(D) = ɔ&V + L#5 MO

⎛

⎜⎝
(� + D/,EP)

�
(

� + ,EP
,ED

(D/,EP)
)�

⎞

⎟⎠ . (6.17)

Note that the Bohr parameter resembles the form of a chemical potential. The ligand-less two state
model energy is adjusted by a correction related to the concentration of ligand and the respective
binding energies.

6.2.2 Data collapse

Considering that all two-state models, including those modeled using MWC considerations, have an
active (or open) probability given by the logistic equation, all QBDUJWF curves should fall on the same line

5Also called a Fermi-Dirac equation.
6The Bohr parameter is named after Christian Bohr, the father of Niels Bohr. He described what

is now called the Bohr effect, in which presence of CO� decreases hemoglobin’s oxygen binding effi-
ciency. The Bohr parameter arises in that case as well.
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when plotted against the Bohr parameter. So, if we could determine ɔ&V, ,EP, and,ED by performing
experiments and statistical inference, we can compute the Bohr parameter '(D) for each value of D.
If we then plot the measured QBDUJWF versus '(D), all points should fall along the logistic curve given by
(6.17).

To investigate this, we will use data acquired in Henry Lester’s lab on the nicotinic acetylcholine
receptor/ion channel. This ion channel is perhaps the best studied ion channel in nature, certainly of
importance in the human nervous system. Its structure is shown in Fig. 14. The experimenters per-
formed voltage clamp experiments to get open probabilities of the ion channels as a function of ligand
(in this case acetylcholine, abbreviated ACh). They performed mutations of the different domains
of the receptor and repeated the experiments, showing different responses to ligand. Their original
figure is shown in Fig. ??.
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FIG. 1 a, Voltage-clamp currents from oocytes expressing mouse 
muscle acetylcholine receptors (AChR). Left, wild type; right, a subunit 
combination with 3 Leu 9'Ser mutations. ACh concentrations for each 
application are shown above the traces. b, Normalized average dose-
response relations for exemplary combinations containing O (wild type) 
to 4 (mt=4) Leu 9'Ser mutations: a2PYli (wild type), apy*o, a2P*y*o, 
a!p*yo and a1py*i5*. The horizontal line at 0.5 represents the EC5a for 
each combination. The receptors with mt= 4 expressed rather low 
maximal current levels (20-100 nA). Each dose-response relation rep-
resents at least 5 oocytes from at least 2 batches. c, Relationship 
between number of mutated subunits and ECso (logarithmic axis) for 
all the combinations measured (Table 1). Each symbol represents a 
distinct combination. S.e.ms are shown where they exceed the size of 
the symbols. 
METHODS. Leucine-to-serine mutations were generated by site-directed 
mutagenesis using the Clontech Transformer site-directed mutagenesis 
kit (Palo Alto, CA) and confirmed by sequencing. mRNA was synthesized 

Fig. 2). We analysed the responses assuming that ( 1) currents 
summed from independent populations of ai'Py8, a2PY8 and 
a*apy8 receptors, (2) receptors assembled equally well with a 
and with a*, and (3) the two possible subunit arrangements for 
a*apy8 receptors had identical responses. The calculated EC50 

values for a*apy8 ranged from I to 2 µM, within the range 
observed for the other receptors with m; = 1. These results, and 
the observation that the ai' py8 receptor has an EC50 in the range 
of other receptors with m; = 2, show that the aLeu 9' residues 
do not occupy a privileged position in the gating process, despite 
the fact that agonist binds at least partly to the a-subunit. 

TABLE 1 Dose-response relations for mouse muscle ACh receptors 
containing various numbers of mutated Leu 9'Ser subunits (mt) 

m: mRNA injections EC50 (nM) Hill coefficient 

0 a2PYi5 24,010 1.68 
1 a*apyo 1,290 2.15±0.22 

a2P*yo 531 2.03 
a2py*o 1,910 1.82±0.14 
a2Pyo* 486 1.98 

2 a1pyo 202 1.81 
a2P*y*i5 49.7 1.64 
a2P*yi5* 208±69 1.34 
a2Py*o* 42.7 1.89 

3 a!p*yo 10.3 1.44 
a!py*i5 15.1 1.61 
a!py8* 8.4±1.3 1.45 

a2P*y*8* 9.8±1.3 1.30 
4 a!P*yo* 2.3 0.96 

a!Py*li* 2.0±0.6 1.02±0.26 
5 a1p*y*i5* <1 

S.e.ms for EC50 were less than 10% of the mean, except where given; 
s.e.ms for Hill coefficient were less than 0.07, except where given. 
Responses for the a!P*y*o* combination were too small for reliable 
measurements of EC50 or Hill coefficient. 
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in vitro using the Megascript kit (Ambion, Austin, TX). pBluescript plas-
mids containing the AChR subunits were linearized and run-off 
transcripts prepared with T7 RNA polymerase Stage V-VI Xenopus 
oocytes were isolated and injected with 10-50 ng of mRNA in a stoichi-
ometric ratio for a: p: y: i5 of 2: 1: 1: 1 (ref. 12). Before recording, oocytes 
were incubated at 18 'C in a modified Barth's solution supplemented 
with 50 µg ml-1 Gentamicin, 2.5 mM pyruvate and 0.6 mM theophylline. 
Electrophysiological recordings were carried out 2-4 days after injec-
tion. Membrane potential was held at -80 mV with a 2-electrode volt-
age-clamp circuit. Bath solutions contained 96 mM NaCl, 2 mM KCI, 
1 mM MgCl2 and 5 mM HEPES, pH 7.5. Ca2+ was omitted from the 
bath solution and atropine (1 µM) was included to prevent activation 
of endogenous Ca2+ -activated Cl channels via muscarinic receptors. 
Individual dose-response relations were fitted to the Hill equation, 
I/Ima,= 1/(1 + { EC50/[Al}""), where [A) is the ACh concentration, EC50 

is the ACh concentration giving half-maximal response, Ima, is the maxi-
mal response, and nH is the Hill coefficient. 

In single-channel studies with the ai' py8 receptor (Fig. 3), 
ACh evoked bursts of openings lasting hundreds of milliseconds, 
similar to records with the aLeu 9'Cys AChR (ref. 7) and much 
longer than bursts in the wild type at the same ACh concentra-
tion (ACh). Within a burst, however, there were many brief 
(time constant ~0.15 ms) closings, so that the longest compo-
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FIG. 2 Dose-response relation for a*apyo, determined by injecting 
oocytes with a mixture of mRNA for a*, a, p, 8 and 8 subunits. The 
injected mRNA mole fraction a* /(a*+ a) was 0.5. The dose-response 
relations were measured independently for a;pyo and for a2PY8 in other 
oocytes from the same batch. The normalized currents for the mixture 
were expressed as the sum of dose-response relations for these 2 
combinations plus a third relation for aa*py8. With the assumptions 
given in the text, if the mole fraction of expressed a* subunit is a*, the 
proportion of receptors of each species is (a*)2, (1- a*)2, and 
2a* (1- a*), respectively. The results fit best for a*= 0.25. The calcula-
ted dose-response relation for a*apyi5 is characterized by EC50 = 
1.29 µM and nH = 2.15. 
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Figure 14: Left, a schematic of the nicotinic acetylcholine receptor and ion channel.
Adapted fromFig. 7.26 of PBoC2. Right, voltage clamp experimental data for receptors
containing various mutations. Figure taken from Labarca, et al., Nature, 376, 514–516.

I digitized these data and performed a maximum likelihood estimate to get the necessary param-
eters. I then computed the Bohr parameter for each data point and plotted all data together on one
plot. The result is shown in Fig. 15. The code to perform this analysis is at the end of this lecture.

6.3 Information and channel capacity

Ligand-gated ion channels sense the surroundings. If a channel is open, it is indicative that there are
likely more ligands around than when it is closed. So, we may ask, how much information about the
ligand concentration does the open or closed states of channels give the cell? Specifically, say we
have /DFMM ion channels in a cell and that O of them are open. What can we learn about the ligand
concentration D given that we know O and /?

We have already dabbled in information theory when we derived the Boltzmann distribution.
We will now apply these ideas to quantify how much information the channel state gives about the
ligand concentration. That is, we seek the mutual information between the open-or-closed state of
the channels and the ligand concentration.

Themutual information between two randomvariables9 and: is the entropy loss that is incurred
by knowing :.

*(9;:) = 4[9]− 4[9 | :], (6.18)
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Figure 15: Top, results of maximum likelihood estimate curve fits of the data from
Labarca, et al., Nature, 376, 514–516. Bottom, all data sets plotted against the Bohr
parameter. The logistic curve is shown in black.

where we have introduced the notion of conditional entropy,

4[9 | :] =
∑

Z
1(Z)

(
−
∑

Y
1(Y | Z) MPH� 1(Y | Z)

)
. (6.19)

The conditional entropy is then the entropy associated with the distribution 1(9 | :), averaged over
:. The mutual information is then

*(9;:) = −
∑

Y
1(Y) MPH� 1(Y) +

∑

Z
1(Z)

(
∑

Y
1(Y | Z) MPH� 1(Y | Z)

)
. (6.20)

It can be shown that the mutual information is symmetric, such that *(9;:) = *(:;9).

In the present case, we take 9 = D and : = O. I will not work out the mathematical details here
(see the Marzen and Phillips paper), but will state without proof that the maximum mutual informa-
tion possible, called the channel capacity, is approximately (in the low noise limit)

*PQU ≈ MPH�

( �√
�ȎF

∫
EO ȑ O

)
, (6.21)
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where ȑ O is the standard deviation of 1(O | D,/). We know that 1(O | D,/) describes a Binomial
distribution, where the probability that a given channel is open is given the expression we derived in
(6.8). The standard deviation is then that for a Binomial distribution,

ȑ �
O = /QPQFO(� − QPQFO). (6.22)

Using this expression and evaluating the integral gives

*PQU ≈ MPH�

(√
�/
ȎF
(

TJO−�√QNBY
PQFO − TJO−�

√
QNJO

PQFO

))
, (6.23)

which is related to the dynamic range, since the inverse sine function TJO−�(Y) is monotonic on the
interval � ≤ Y ≤ �.

So, the bigger the dynamic range, the larger the channel capacity, and the more then cell and
“know” about its surroundings. As we have seen, having multiple ligands bind to the channel to con-
trol the gating where binding it tighter when the channel is open, boosts the dynamic range, therefore
increasing the channel capacity.
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