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7 Statistical mechanics of gene expression regulation

Wehave been using the tools of statisticalmechanics, and two-state andMWCmodels in particular, to
study a host of problems, including ligand-receptor binding, allostery, operation of ion channels, and
even singlemolecule experiments in the homework. Wewill now use the tools of statisticalmechanics
to study the regulation of gene expression. A gene is expressed when its gene product is produced
by the cell, first by transcription of mRNA by RNA polymerase and then translation of the mRNA
into protein by the ribosomes. As in the previous applications of statistical mecahanics, the power of
this approach lies in

• The ease of mathematizing cartoons using states and weights.

• Dissociation constants emerge, and these can be measured.

• Allows identification of the “knobs” that can be used to tune gene expression.

7.1 Gene expression preliminaries

Tobeing talking about regulation of gene expression, weneed to first understand the basic architecture
of a gene. We will focus on bacteria; eukaryotic gene architecture is typically more complex.

Fig. 16 show a cartoon of the promoter region of a gene. The colored rectangle represents the
DNA. The light pink region to the right is the start of the coding region of the gene. Ahead of the
gene is a promoter, which is the part of the DNA that the RNA polymerase binds to to start tran-
scription. The promoter region is decorated with binding sites for othermolecules generically termed
transcription factors.

An activating transcription factor, or activator, may bind a region near the promoter, and then
can have a favorable interaction with the polymerase. As we will see when we work out the statistical
mechanics, this results in recruiting more polymerase to the promoter and therefore gives higher
expression of the gene.

A repressive transcription factor, or repressor, may bind to a part of the promoter region, some-
times called an operator. When it does so, it occludes or otherwise inhibits the polymerase from
binding the promoter.

It is useful to know some typical numbers about this system.

quantity value BNID

RNA polymerase footprint ≈ �� base pairs 107873

elongation rate ≈ �� nucleotides/second 103021

initiation rate ≈ �� transcripts/minute 111997

number of RNA polymerases per cell ≈ ���� 101440
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Figure 19.18: Schematic
representation of the simple statistical
mechanical model of recruitment and
repression. States and weights for the
case in which activation and simple
repression act simultaneously.

Note that the cartoon shows a schematic representation of the dif-
ferent ways that the region in the vicinity of the promoter can be
occupied and what the statistical weights are of each such state
of occupancy. We can compute the probability of RNA polymerase
binding by considering the ratio of favorable outcomes to the total
partition function, resulting in

pbound(P, A, R; NNS)

= Z(P − 1, A, R; NNS)e
−βεSpd + Z(P − 1, A− 1, R; NNS)e

−β(εSad+εSpd+εpa)

Ztot(P, A, R; NNS)
.

(19.24)

As before, perhaps the simplest way to interpret this result is with
reference to the regulation factor, resulting in

pbound(P, A, R; NNS) = 1

1 + [NNS/PFreg(A, R)]eβ(εSpd−ε
NS
pd)

, (19.25)
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Figure 16: A sketch of the promoter region of a gene. The RNA polymerase (light
blue) binds to the promoter to start transcription. It is occluded from doing so when
a repressor is bound to the repressor binding site. If an activator is bound to the acti-
vated binding site, the polymerase has a favorable interaction with it when bound to the
promoter. This figure is adapted from PBoC2 Fig. 19.18. In PBoC2, the energies are
denoted with epsilons; we will use &’s.

7.2 Separation of time scales

In our modeling, we will assume that the rate of production of mRNA transcripts for a particular gene
is proportional to the equilibrium probability that a polymerase molecule is bound to the promoter of
the gene. This seems odd at first glance, that we would use an equilibrium thermodynamic property,
QCPVOE, to describe a kinetic process, the rate of production. The key to this assumption being valid is
a separation of time scales in the transcription process.

Getting the polymerase started is inefficient. The polymerase tends to bind and rebind to the
promoter. It often generate small transcripts that are disregarded, and then rebinds and starts over.
Typically aftermany binding and unbinding events, the polymerase gets goingwith transcription. The
binding and unbinding of the polymerase to the promoter is very fast, so fast that it is typically not
measurable. The dissociation constant, however, can bemeasured, and can be as small as ,E = � nM
(BNID 103592).

We can write the reaction scheme of a polymerase getting started making a transcript as

unbound
L+−−⇀↽−−
L−

bound ǿ N−−→ elongating. (7.1)

Using mass action kinetics, we can write the dynamical equations of the unbound (u), bound (b), and
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elongating (e) states as

E1V
EU = −L+1VDQ + L−1C (7.2)

E1C
EU = L+1VDQ − L−1C − ǿ N 1C, (7.3)

E1F
EU = ǿ N 1C, (7.4)

where 1J is the probability of being in state J and DQ is the concentration of available polymerase. If
we define the dimensionless time Ȓ = L−U, the equations are

E1V
EȒ = −1VDQ/,E + 1C (7.5)

E1C
EȒ = 1VDQ/,E + 1C −

ǿ N
L−

1C, (7.6)

E1F
EȒ =

ǿ N
L−

1C, (7.7)

where we have defined ,E = L−/L+. In looking at the above, if ǿ N/L− ≪ �, then the dynamics of
the secondODE (7.6) are much slower than the first (7.5). The probability 1V rapidly comes to steady
state, so

E1V
EȒ = −1VDQ/,E + 1C ≈ �. (7.8)

So, 1C is entirely determined from this equation, which is in fact an equilibrium equation. The last
equation, (7.7), then states that the rate of elongation, which is the rate of production of mRNA tran-
scripts, is proportional to the equilibrium probability of the promoter being bound, 1C.

So, our goal in quantifying the rate of production of mRNA for a target gene is to compute the
probability that the polymerase is bound to the promoter at equilibrium. The statistical mechanical
approach we have developed are well suited for this task.

7.3 Statistical mechanics of unregulated gene expression

Let us now consider computing 1C for the case where the expression is unregulated. That is, there
are no repressors or activators. There are then two states to consider, the promoter is bound or the
promoter is unbound. Let’s write a states and weights table.

state statistical weight

unbound F−Ȁ &V

bound F−Ȁ (&C−Ȋ Q)

Here, we have done what we did in past lectures, subtracting a chemical potential of the polymerase
to keep track of the loss of entropic degrees of freedom when it binds the promoter. But what is the
chemical potential of the unbound polymerase, Ȋ Q? We need to think a bit more carefully about this.
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It is important to know that nearly all polymerases are bound to the genome and plasmids. This
is known from experiments where cells divide asymmetrically and the DNA-less cell has virtually no
polymerases. So, all of the polymerases are bound to the DNA. They are just bound nonspecifically.

Let 1 be the number of polymerases that are available to transcribe the gene of interest.7 Let
//4 be the number of nonspecific sites on the genome to which a polymerase can bind. Since the E.
coli genome is about �× ��� base pairs, and there are only about 1000 polymerases per cell, and each
polymerase is about 40 base pairs across, //4/1 ≈ ��� as a lower bound8, andwewill take//4 ≫ 1.

With this in mind, we can rewrite the states and weights table explicitly taking into account the
multiplicity of states.

state statistical weight

unbound //4!
1!(//4−1)! F−Ȁ 1&/4

QE

bound //4!
(1−�)!(//4−1+�)! F−Ȁ (1−�)&/4

QE F−Ȁ &4
QE

Here, &/4
QE denotes the energy of nonspecific binding of the polymerase to DNA, and &4

QE denotes the
energy of specific binding of the polymerase to DNA. If //4 ≫ 1, then

//4!

(//4 − 1)! ≈ (//4)
1. (7.9)

With this approximation, we can write 1C as

1C =

/1−�
/4

(1−�)! F−Ȁ (&4
QE+(1−�)&/4

QE )

/1−�
/4

(1−�)! F−Ȁ (&4
QE+(1−�)&/4

QE ) + (//4)1

1! F−Ȁ 1&/4
QE
. (7.10)

Dividing top and bottom by the last term in the denominator yields

1C =
1

//4
F−Ȁɔ&QE

� + 1
//4

F−Ȁɔ&QE
, (7.11)

where ɔ&QE = &4
QE − &/4

QE is the difference in energy between specific and nonspecific counding.
Typically, ɔ&QE < �.

In looking at this expression, it is clear that our Ȋ in our original states and weights table on page
47 is

Ȋ Q = &/4
QE + L#5 MO 1

//4
. (7.12)

This is the same form as the chemical potential of ligands in a dilute solution, with the mole fraction
replaced by 1///4. With this convention, we also find that the statistical weight associated with the
unbound state is unity. The states and weights table is then conveniently written as

7Some of the cell’s polymerases may be transcribing genes or are bound to other promoters. We
will take 1 to be all of those available with the correct ȑ factor.

8The ratio is even bigger, since we could consider each one-base shift to be another non-specific
binding site.
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state statistical weight

unbound �

bound F−Ȁ (&4
QE−Ȋ Q) = 1

//4
F−Ȁɔ&QE .

Because it comes up so often, for convenience going forward, we define

ȏ =
1

//4
F−Ȁɔ&QE , (7.13)

such that the probability that an unregulated promoter is bound is 1C = ȏ/(� + ȏ ).

7.4 Simple repression

Now, we will consider the case where a repressor can bind to the promoter region and occlude the
polymerase from binding. As we write our states and weights table, we are again faced with how to
write a chemical potential, this time for repressors. In fact, most repressors are also bound to DNA,
either specifically or nonspecifically. We can see this by considering that the dissociation constant
for nonspecific binding of repressors to DNA is about 10 µM.9 The number of nonspecific binding
sites, accounting for possible overlap, is about ��� per cell, for a concentration of about 200 µM. The
equilibrium expression for receptor-nonspecific site binding is

,E =
D/4 D3
D3·/4

=
(D/4 − D3·/4)(D�

3 − D3·/4)

D3·/4
≈ D�

/4(D�
3 − D3·/4)

D3·/4
. (7.14)

In the last approximation, we have used that fact that there are far fewer repressors than nonspecific
binding sites, since repressor copy numbers range from 10 to 10,000 per cell (BNID 102632). We can
rearrange this to get

D3·/4 =
D�

3 D�
/4

,E + $�
/4

=
D�

3
� + ,E/D�

/4
. (7.15)

Because ,E ≪ D�
/4, we have D3·/4 ≈ D�

3, so nearly all repressors are bound to DNA.

We therefore know that the chemical potential term in the states and weights table for repressors
is Ȋ S = &/4

SE + L#5 MO 3///4. So, our states and weights table for repressor-mediated transcription
is

state statistical weight

unbound �

polymrerase bound ȏ

repressor bound F−Ȁ (&4
SE−Ȋ S) = 3

/44
F−Ȁɔ&SE

From the states and weights table, we get

1C =
ȏ

� + ȏ + 3
/44

F−Ȁɔ&SE
. (7.16)

9I got this number from Bintu, et al., Curr. Op. Genet. Dev., 15, 116–124, 2005.
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7.4.1 Fold change

A more convenient metric to measure experimentally is the fold change in gene expression, defined
as

fold change =
1C

1C(3 = �) . (7.17)

The unregulated probability of bound polymerase is always ȏ/(� + ȏ ), so it is convenient to write

1C =
ȏ

� + ȏ (fold change) =
ȏ

� + ȏ
�

� + 3
(�+ȏ )/44

F−Ȁɔ&SE
(7.18)

The fold change is then

fold change =
�

� + 3
(�+ȏ )/44

F−Ȁɔ&SE
. (7.19)

The value of ȏ will vary from promoter to promoter. The term 1///4 is close to the same for
all bacterial cells, with

1
//4

≈ ���

��� ≈ ��−�. (7.20)

For the lac promoter, ɔ&QE ≈ −�L#5, and for the T7 promoter, which codes for the protein of the
T7 phage, ɔ&QE ≈ −�L#5. Thus, for lac, ȏ ≈ ��−�, and for T7, ȏ ≈ �. For the former cass, ȏ
is small, and we have a weak promoter. A weak promoter allows for easier regulation; it takes less
repressors to see a change in expression levels, since for weak promoters,

fold change ≈ �
� + 3

/44
F−Ȁɔ&SE

. (7.21)

In this form, we see that the quantity //4FȀɔ&SE is akin to a dissociation constant in ligand-receptor
binding. Defining ,S ≡ //4FȀɔ&SE , we can write the fold change as

fold change ≈ �
� + 3/,E

. (7.22)

A cell can tune3 by regulating the expression of the repressor itself, and evolution can tune ɔ&SE.

7.5 Simple activation

Let us now turn our attention to simple activation. In this case, there is no repressor; just an activator
that has a favorable interaction with the polymerase. We can again write our states and weights, and
can do so taking shortcuts we have already worked out. Specifically, we know that it is always the
difference in energy between specific and nonspecific binding that comes into the statistical weights.
We also know that most activators, like repressors, are bound to promoter regions or to nonspecific
sites on the DNA. The only added wrinkle in this example is the extra energy, ɔ&QB, in the state
where both the activator and polymerase are bound that is due to the favorable interaction between
the activator and polymerase.
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state statistical weight

unbound �

polymerase bound ȏ

activator bound "
/44

F−Ȁɔ&BE

activator and polymerase bound ȏ "
/44

F−Ȁ (ɔ&BE+ɔ&QB)

The numerator in the expression for 1C contains the weights where the polymerase is bound, in this
case two of entries from the states and weights table.

1C =
ȏ + ȏ "

/44
F−Ȁ (ɔ&BE+ɔ&QB)

� + ȏ + "
/44

F−Ȁɔ&BE + ȏ "
/44

F−Ȁ (ɔ&BE+ɔ&QB)

=
ȏ

� + ȏ
� + "

/44
F−Ȁ (ɔ&BE+ɔ&QB)

� + "
(�+ȏ )/44

F−Ȁɔ&BE + ȏ "
(�+ȏ )/44

F−Ȁ (ɔ&BE+ɔ&QB)

=
ȏ

� + ȏ
� + ("/,E,B)F−Ȁɔ&QB

� + "/,E,B +
ȏ

�+ȏ ("/,E,B)F−Ȁɔ&QB
. (7.23)

Here, we have defined ,E,B analogously to ,E,S from before,

,E,B = /44 FȀɔ&BE . (7.24)

This is the dissociation constant activator binding to the promoter region.

We can immediately extract the expression for the fold change,

fold change =
� + ("/,E,B)F−Ȁɔ&QB

� + "/,E,B +
ȏ

�+ȏ ("/,E,B)F−Ȁɔ&QB
. (7.25)

The fold change can actually be less than one if the promoter is strong (or if ɔ&QB is large and positive.
That means that presence of the activator can actually decrease expression. If we want good control
of expression by an activator, then, we need to have a favorable interaction between the polymerase
and the activator (ɔ&QB < �) and a weak promoter (ȏ ≪ �). Provided this is the case, such that
ȏ/(�+ ȏ ) ≈ ȏ ≪ �, the maximum possible fold change can be found by taking the limit of large ".
We get a maximum fold change of F−ɔ&QB .

7.6 Cooperative repression

Now imagine a situation where two repressors can bind to the operator. We may get additional ener-
getic contribution if there are two repressors,10 say ɔ&SS. We can again directly write the states and
weights table.

10PBoC2 uses the notation ɔ&SS = +.
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state statistical weight

unbound �

polymrerase bound ȏ

one repressor bound �3/,E,S

two repressors bound (3/,E,S)�F−Ȁɔ&SS

The probability of having the polymerase bound is then

1C =
ȏ

� + ȏ
�

� + �
�+ȏ (3/,E,S) (� + (3/,E,S)F−Ȁɔ&SS)

. (7.26)

For a weak promoter, this reduces to

1C =
ȏ

� + ȏ
�

� + (3/,E,S) (� + (3/,E,S)F−Ȁɔ&SS)

=
ȏ

� + ȏ
�

(� + 3/,E,S)
� + (F−Ȁɔ&SS − �) (3/,E,S)�

. (7.27)

The case where there is no enhanced binding of the second receptor, i.e, ɔ&SS = �, reduces to

1C =
ȏ

� + ȏ
�

(� + 3/,E,S)
� . (7.28)

So, cooperative binding, with ɔ&SS < �, gives greater repression than without cooperative binding.

The analyses in this lecture demonstrate how carefully considering the statistical mechanics of
gene expression reveals what parameters, usually energetics of binding interactions, may be adjusted
to tune the properties of regulation of gene expression.
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