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8 Dynamics of gene expression and genetic switches

Last time, we looked at the equilibrium statistical mechanics of control of gene expression. In par-
ticular, we saw that separation of time scales enables us to describe the rate of transcription with
thermodynamic models.

rate of transcription = ǿ N1C, (8.1)

where 1C is the equilibrium probability that the polymerase is bound and S is a phenomenological rate
constant for getting the polymerase going along the transcript. In this lecture wewill use those results
to write dynamical equations for the concentrations of mRNA and protein in a cell or cell population.

Sections 19.3.2-4 of PBoC2 discuss a master equation approach to these dynamics. We will not
treat them in this class, but being familiar with them will help you in many contexts of biological
physics.

8.1 Basic dynamical equations for gene expression

The dynamics of mRNA transcription can be written in the form

EN
EU = −ȁ NN + ǿ NG(S, B), (8.2)

whereN is themRNA concentration, S and B are the concentrations of a regulators of gene expression
(repressors and activators, respectively, and they may be the gene product of interest), and G(S, B) is
some dimensionless function, almost always proportional to 1C, computed using methods of statis-
tical mechanics. The first term, −ȁ NN, on the right hand side represents the decrease in mRNA
concentration due to the combined effects of dilution by cell growth and natural degradation due to
the finite lifetime of mRNA. Similarly, we may write the dynamical equations for protein production.

EQ
EU = −ȁ QQ + ǿ QN, (8.3)

where we consider protein degradation and production by translation of themRNApresent. Defining
dimensionless time to be Ȓ = ȁ QU, these equations may be written as

ȁ Q
ȁ N

EN
EȒ = −N +

ǿ N
ȁ N

G(S, B), (8.4)

EQ
EȒ = −Q +

ǿ Q
ȁ Q

N. (8.5)

Typically, and especially in bacteria, proteins are much more stable than mRNAs. mRNAs typically
have a half life of fiveminutes inE. coli (BNID 106869) and proteins have a half life of 20 hours (BNID
111930).11 Thus, ȁ Q ≪ ȁ N. This implies that the left side of the mRNA dynamical equation (8.4)
is close to zero. Thus, mRNA dynamics quickly come to steady state, and as far as protein dynamics
are concerned,

N =
ǿ N
ȁ N

G(S, B). (8.6)

11See also the entry in CBBTN .

53

https://bionumbers.hms.harvard.edu/bionumber.aspx?&id=106869
https://bionumbers.hms.harvard.edu/bionumber.aspx?id=111930
https://bionumbers.hms.harvard.edu/bionumber.aspx?id=111930
http://book.bionumbers.org/how-fast-do-rnas-and-proteins-degrade/


Substituting this expression into the dynamical equation for protein concentration gives

EQ
EU = −ȁ QQ +

ǿ Q ǿ N
ȁ N

G(S, B). (8.7)

Again, we see that a separation of time scales, in this case the time scales of mRNA and protein
degradation, leads to simplified expressions. For notational convenience, we will define ȁ = ȁ Q and
ǿ = ǿ Q ǿ N/ȁ N going forward, giving

EQ
EU = −ȁQ + ǿG(S, B). (8.8)

8.2 Sudden repression

To investigate the dynamics of the concentration of a gene product, we will begin with the special
case of a gene under control of a single repressor. Recall that for this case,

1C =
ȏ

� + ȏ
�

� + 3///4 F−Ȁɔ&SE
(8.9)

Ifwedefine the concentration of repressors in the cell to be S = 3/7DFMM, anddefine, = //4FȀɔ&SE/7DFMM,
we have

1C =
ȏ

� + ȏ
�

� + S/, . (8.10)

We absorb the factor ȏ/(�+ ȏ ) into ǿ , which gives our dynamical equation for the concentration of
protein Q,

EQ
EU = −ȁQ +

ǿ
� + S/, . (8.11)

Imagine that initially the repressor concentration is zero, and then suddenly jumps to S� at time
U = �. That is, S(U) = �Ȇ (U), where Ȇ (U) is the Heaviside function. If the protein level is initially at
steady state, then, for U < �, we have

−ȁQ + ǿ = �, (8.12)

giving Q = ǿ/ȁ for U < �. So, we have our dynamical equation to solve with initial condition.

EQ
EU = −ȁQ +

ǿ
� + S�/, , (8.13)

Q(�) = ǿ/ȁ . (8.14)

This is a first order linear differential equation, which may be solved by integrating factor to give

Q(U) = ǿ
ȁ

� + (S�/,)F− ȁ U

� + S�/, . (8.15)

In looking at this expression, we first see that the decay rate of the protein sets the time scale of
the dynamics, as time only appears multiplied by ȁ . The result is an exponential decay to the new
repressed setpoint of gene expression level. We are essentially just waiting for the existing protein to
degrade or get diluted.
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Computing the ratio

Q(U → ∞)

Q(U = �) =
�

� + S�/, , (8.16)

gives exactly the fold change we expect from repression. Generally speaking, we can absorb the factor
ȏ/(�+ ȏ ) into the parameter ǿ , and take G(S, B) to be the fold change we computed from statistical
mechanical theory of gene expression regulation.

EQ
EU = −ȁQ + ǿ · fold change. (8.17)

8.3 A synthetic genetic switch

We have worked out how to incorporate repression (and also activation, since we know how to com-
pute the fold change for activation) into the dynamical equations for protein levels. In a sense, we have
mathematized the cartoon without first drawing the cartoon. Usually when we denote repression, we
use a flat arrowhead. So, if repressor R represses production of species X, we write

R X.

Similarly, if an activator A activates species X, we connect A to X with an arrow.

A X.

We now consider an interesting situation. We have two repressors, 1 and 2, which are mutually
repressive. In this case, we draw the interactions between the gene products as

R� R�

Such a collection of genes that control each other is called a genetic circuit. This circuit with mu-
tual repressors was developed by https://doi.org/10.1038/35002131 in 2000, and is termed a “toggle
switch” for reasons that will become clear as we proceed with our analysis of it.

8.3.1 Dynamical equations for the toggle switch

For the toggle switch, we will assume that O� repressors may bind to the promoter region of repressor
2, andO� repressorsmay bind to the promoter region of repressor 1. We assume further that the energy
of binding N repressors is N times the energy of binding a single repressor. That is, all repressor
bindings have the same energy. So, each binding event has the same dissociation constante, ,. It can
be shown the the fold change in the probability that the polymerase is bound for O repressor binding
sites is

fold change =
�

(� + S/,)O . (8.18)

This is consistent to what we derived in the last lecture for O = � and O = �.
Though we need not make these assumptions for the following analysis, for simplicity, we will

take ,� = ,� ≡ ,, ǿ � = ǿ � ≡ ǿ , and O� = O� ≡ O. We assume further that both repressor 1 and
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repressor 2 have the same decay rate ȁ , which would be the case if the repressors are fairly stable and
the decay rate in concentration is set by dilution. Then, our dynamical equations are

ES�
EU = −ȁS� +

ǿ
(� + S�/,)O , (8.19)

ES�
EU = −ȁS� +

ǿ
(� + S�/,)O . (8.20)

As we proceed to analyze these dynamical equations, we can first nondimensionalize them. We
can do so by defining

S̃� = S�/,, (8.21)

S̃� = S�/,, (8.22)

Ũ = ȁ U, (8.23)

ǿ̃ = ǿ,/ȁ , (8.24)

(8.25)

The resulting dimensionless equations are

ES̃�
ẼU = −S̃� +

ǿ̃
(� + S̃�)O , (8.26)

ES̃�
ẼU = −S̃� +

ǿ̃
(� + S̃�)O . (8.27)

We will henceforth drop the tildes for notational convenience, proceeding with the understanding
that we are dealing with the dimensionless versions of the respective variables and parameters.

8.3.2 Fixed points and nullclines

In analyzing the differential equations, we will first compute the nullclines, which are the curves
in the S�-S� plane where the repsective time derivatives vanish. There are two nullclines, one for
ES�/EU = � and one for ES�/EU = �. The nullclines are defined by

ES�
EU = � = −S� +

ǿ
(� + S�)O , (8.28)

ES�
EU = � = −S� +

ǿ
(� + S�)O . (8.29)

Solving these equations gives

S� =
ǿ

(� + S�)O , (8.30)

S� =
ǿ

(� + S�)O . (8.31)
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A steady state is achieved when these nullclines cross, since this implies that Ṡ� = Ṡ� = �, where the
over-dot implies time differentiation. A steady state, or crossing of nullclines, is called a fixed point.

By symmetry a fixed point exists when S� = S�. The fixed point is given by

S� =
ǿ

(� + S�)O , (8.32)

which can be rearranged to give

S�(� + S�)
O = ǿ . (8.33)

The right hand side is constant and the left hand side is a monotonically increasing function of S� for
positive S� (the only physically allowed values) and O ≥ � (which is true by construction). Further-
more, the left hand side grows from zero without bound, thereby crossing the horizontal line at ǿ
exactly ones. Therefore, the fixed with S� = S� is unique and is given by the solution to (8.33). We
will investigate this fixed point in the next section.

I will not work through the mathematics here, but it can be shown that in addition to the fixed
point with S� = S�, two other fixed points exist, one with S� > S� and one with S� > S�, both with the
same |S� − S�|, provided O > �, and

ǿ >
OO

(O − �)O+� . (8.34)

It can be further shown that there are no other fixed points.

A plot of the nullclines along with fixed points are shown in Fig. 17. For the parameter values
used in making the plot, there are three fixed points.

Figure 17: Left, phase portrait of the toggle switch system for parameters ǿ = �� and
O = �. Stable fixed points are shown with solid circles and the unstable fixed point as a
solid circle. The arrows indicate the how S� and S� change throughout the S�-S� plane.
The center and right plots are details of specific fixed points.

8.3.3 Linear stability analysis

We now turn to analysis of the S� = S� fixed point. We will take the approach of linear stability
analysis. We first give an introduction to the technique of linear stability analysis generically. The
basic idea is that we approximate a nonlinear dynamical system by its Taylor series to first order near
the fixed point and then look at the behavior of the simpler linear system. The Hartman-Grobman
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theorem (which we will not derive here) ensures that the linearized system faithfully represents the
phase portrait of the full nonlinear system near the fixed point.

Say we have a dynamical system with variables V with

EV
EU = G(V), (8.35)

where G(V) is a vector-valued function, i.e.,

G(V) = (G�(V�, V�, . . .), G�(V�, V�, . . .), . . .). (8.36)

Say that we have a fixed point V�. Then, linear stability analysis proceeds with the following steps.

1) Linearize about V�, defining ȂV = V− V�. To do this, expand G(V) in a Taylor series about V�
to first order.

G(V) = G(V�) +∇G(V�) · ȂV + · · · , (8.37)

where∇G(V�) ≡ � is the Jacobi matrix,

∇G(V�) ≡ � =

⎛

⎜⎜⎝

∂G�
∂V�

∂G�
∂V�

· · ·
∂G�
∂V�

∂G�
∂V�

· · ·
...

...
. . .

⎞

⎟⎟⎠ . (8.38)

Thus, we have

EV
EU =

EV�
EU +

EȂV
EU = G(V�) + � · ȂV + higher order terms. (8.39)

Since
EV�
EU = G(V�) = �, (8.40)

we have, to linear order,

EȂV
EU = � · ȂV. (8.41)

2) Compute the eigenvalues, ȉ of �.

3) – If 3F(ȉ) < � for all ȉ , then the fixed point V� is linearly stable.
– If 3F(ȉ) > � for any ȉ , then the fixed point V� is linearly unstable.
– If 3F(ȉ) = � for one or more ȉ , with the rest having 3F(ȉ) < �, then the fixed point

V� lies at a bifurcation.

So, if we can assess the dynamics of the linearized system near the fixed point, we can get an idea
what is happening with the full system.

8.3.4 Linear stability analysis for the toggle switch

To perform linear stability analysis for the toggle switch, we begin by writing the linearized system.
We note that we are considering the fixed point where S� = S� ≡ S�. We have also already derived in
(8.33) that S�(� + S�)O = ǿ .

EȂS�
EU ≈ −� − Oǿ ȂS�

(� + S�)O+� , (8.42)
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EȂS�
EU ≈ −� − Oǿ ȂS�

(� + S�)O+� . (8.43)

We can write this in matrix form as

E
EU

(
ȂS�
ȂS�

)
= � ·

(
ȂS�
ȂS�

)
, (8.44)

with

� = −
(

−� − O ǿ
(�+S�)O+�

− O ǿ
(�+S�)O+� −�

)
. (8.45)

To compute the eigenvalues of �, we compute the characteristic polynomial,

(� + ȉ)� − O� ǿ �

(� + S�)�O+� = �. (8.46)

Using the fact that at the fixed point, ǿ = S�(� + S�)O, this can be re-written as

(� + ȉ)� − O�S�
�

(� + S�)� = �. (8.47)

This is solved to give

ȉ = −� ± OS�
� + S�

. (8.48)

The eigenvalues are both real. One eigenvalue, ȉ = −� − OS�/(� + S�), is always negative. The
other eigenvalue is positive if

OS�
� + S�

> �. (8.49)

A bifurcation occurs when the behavior of a dynamical system changes qualitatively for a small
change in parameter values. The fixed point at S� = S� goes from being stable to unstable as the
quantity OS�/(� + S�) goes from being less than one to greater than one. So, the bifurcation in this
system occurs when

S� =
�

O − � . (8.50)

Recalling again that ǿ = S�(� + S�)O, we have a bifurcation at

ǿ =
OO

(O − �)O+� (8.51)

We have restricted ourselves to positive integer values of O. WE note that both eigenvalues are neg-
ative if O = �, since the larger eigenvalue is ȉ = −� + OS�/(� + S�). So, we have arrived at the
conditions for the S� = S� fixed point to be unstable, O ≥ � and ǿ > OO/(O − �)O+�.

8.3.5 Mutual repression as a toggle switch

We have shown that the fixed point at S� = S� is unstable. This means that a small perturbation away
from S� = S� = S� will result in the system moving away from the fixed point. This is shown in the
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phase portrait of the system, shown in Fig. 17. The arrows indicate how the system evolves. As clear
in the phase portrait, the system goes toward the instable fixed point, and then turns toward a high
S�/low S� state, or vice versa, depending on what the initial values of S� and S� were. As can be seen
in the detailed portrait around the S� < S� fixed point, the system evolves toward the fixed point. It
is stable.

As there are two stable fixed points, the system can serve as a toggle. It has two stable states,
one with high S� and one with low S�. Small perturbations will not move the system from these stable
states. However, a large perturbation will move the system to the other fixed point. This can be done
in practice by adding inducers, such as IPTG, to cells that have this circuit architecture.

The toggle is akin to a light switch. If you balance the switch exactly in the middle, it is a fixed
point, but if you bump it ever so slightly, the switch will flip up or down. Once down, say, you can
jiggle the switch gently, and it will remain down. If you push hard on the switch, it will push up, and
then stay there.

This demonstrates how a cell can combine gene regulation architectures to get function. In this
case, a cell can create a bistable switch, which can bring the cell stably into one or two different states.
Importantly, we found that at least two repressors need to be able to regulate
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