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16 Linear viscoelasticity

While the storage and loss moduli are experimentally determined, we do not have a generic model for
how a material responds to stress. This is where the theory of linear viscoelasticity is useful. We
will explore this idea first through example and then sharpen what linear viscoelasticity is.

16.1 The Maxwell model

Imaginewehave amaterial that is both solid-like andfluid-like. Iwill write down a constitutive relation
and then show that thematerial is solid like on short time scales (high frequency) and fluid like on long
time scales (low frequency). The constitutive relation is

ȑ + Ȓ. ȑ̇ = ȅ ȃ̇ . (16.1)

Here, Ȓ. = ȅ/& is theMaxwell time. Let us now perform the experiment where we exert a periodic
stress on this material. We take ȑ (U) = ȑ� TJO ȗU. Then, we have

ȑ�(TJO ȗU + Ȓ. ȗ DPT ȗU) = ȅ ȃ̇ . (16.2)

As a result, we have

ȃ̇ =
ȑ�
ȅ (TJO ȗU + Ȓ. ȗ DPT ȗU). (16.3)

We can integrate this ODE to get

ȃ = ȑ�

(
−DPT ȗU

ȅ ȗ +
TJO ȗU

&

)
+ $, (16.4)

where $ is an integration constant. If we take ȃ (�) = �, then $ = ȑ�/ȅ ȗ , giving

ȃ = ȑ�

(
−DPT ȗU

ȅ ȗ +
TJO ȗU

&

)
+

ȑ�
ȅ ȗ (16.5)

We can rearrange our expression for the strain by multiplying both sides by & to get

&ȃ = − ȑ�
Ȓ. ȗ DPT ȗU + ȑ� TJO ȗU + ȑ�

Ȓ. ȗ . (16.6)

Now, if ȗ Ȓ. ≫ �, i.e., for high frequencies, the first and last terms are negligible and we have

&ȃ = ȑ� TJO ȗU = ȑ , (16.7)

which is the constitutive relation for an elastic solid. For low frequencies, the second term is negligible
and we have

&ȃ = − ȑ�
Ȓ. ȗ DPT ȗU + ȑ�

Ȓ. ȗ (16.8)

so

ȃ̇ =
ȑ�
ȅ TJO ȗU = ȑ/ȅ , (16.9)

which is the constitutive relation for a viscous fluid. So, the material with this constitutive relation is
elastic on short time scales and viscous on long time scales.
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16.2 The creep function

Instead of investigating how the material responds to an oscillatory stress, imagine we instead sud-
denly impose a stress ȑ� upon the material. So, we have

ȑ (U) = ȑ� Ȇ (U), (16.10)

where Ȇ (U) is the Heaviside step function.

We will now compute the strain response to a step in stress for a Maxwell material. Inserting the
imposed stress into the constitutive relation (16.1), and noting that the time derivative of a Heaviside
function is a Dirac delta function, we have

ȑ� Ȇ (U) + ȑ� Ȓ. Ȃ (U) = ȅ ȃ̇ . (16.11)

We can solve this differential equation by integrating.

ȃ =

∫ U

−∞
EU′
( ȑ�

ȅ Ȇ (U′) + ȑ�
& Ȃ (U′)

)
=

ȑ�
ȅ UȆ (U) + ȑ�

& Ȇ (U) (16.12)

=
ȑ�
&

(
� +

U
Ȓ.

)
Ȇ (U).

In general, we can write the response to a step in stress as

ȃ (U) = ȑ�+(U)Ȇ (U), (16.13)

where +(U) is called the creep function. For a Maxwell material,

+(U) = &−�(� + U/Ȓ.). (16.14)

We note that for U ≫ Ȓ., +(U), and therefore also ȃ (U), diverge. So, for long times, a Maxwell
material behaves like a fluidwith +(U) ≈ ȅ−�U and ȃ (U) ≈ ȑ� ȅ−�U, so that ȃ̇ ≈ ȑ�/ȅ , the constitutive
relation for a viscous fluid.

Similarly, for U ≪ Ȓ., +(U) = &−�, so that ȃ = ȑ�/&. the constitutive relation for an elastic
solid.

16.3 The creep function and linear superposition

The principle of linear superposition states that for any linear operator L, if LG J = HJ, then

L
(
∑

J
G J

)
=
∑

J
HJ. (16.15)

In linear viscoelasticity theory, the constitutive relations are all of the form

Lȃ = H(ȑ , ȑ̇ , ȑ̈ , . . .). (16.16)

For example, for a Maxwell material, we can define the linear operator

L = ȅ E
EU , and H(ȑ , ȑ̇ ) = ȑ + Ȓ. ȑ̇ . (16.17)
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We looked at the creep function for a single step in stress. Now, let’s say we take two steps in
stress. For concreteness, the stress prior to the first step is stress is ȑJOJU, and the magnitude of the
steps, which happen at time U� and U�, are ɔȑ� and ɔȑ�.

ȑ (U) = ȑJOJU + ɔȑ� Ȇ (U − U�) + ɔȑ� Ȇ (U − U�). (16.18)

We can directly apply the superposition principle to get the response in terms of the creep function
for the single step.

ȃ (U) = ȑJOJU+(U) + ɔȑ�+(U − U�)Ȇ (U − U�) + ɔȑ�+(U − U�)Ȇ (U − U�). (16.19)

If we extend this to many steps, we have, again by superposition,

ȃ (U) = ȑJOJU+(U) +
∑

J
ɔȑ J +(U − UJ)Ȇ (U − UJ). (16.20)

This result is useful for interpreting experiments where more than one step in stress are taken.

We can consider the case of infinitessimal steps, which is what we would get with smoothly vary-
ing stress. Defining ɔUJ = UJ − UJ−�, we have,

∑

J
ɔȑJ Ȇ (U − UJ) =

∑

J
ɔUJ

ɔȑJ
ɔ UJ

Ȇ (U − UJ) ≈
∫ U

�
EU′ Eȑ (U′)

EU′ , (16.21)

where we have arbitrarily taken U� = �. Thus, we have

ȃ (U) = ȑJOJU+(U) +
∫ U

�
EU′ +(U − U′) ȑ̇ (U). (16.22)

Thus, we see that for any applied stress, we may use the known creep function to compute the strain
by evaluating an integral. We can perform integration by parts to get

ȃ (U) = ȑJOJU+(U) + (+(U − U′)ȑ (U′))|U� −
∫ U

�
EU′ E+(U − U′)

EU′ ȑ (U′)

= +(�)ȑ (U) +
∫ U

�
EU′ ȑ (U′) E+(U − U′)

E(U − U′) , (16.23)

an alternative and sometimes more convenient expression.

We can use this expression to derive the response of a Maxwell material to oscillatory forcing.
We take ȑ (U) = ȑ� TJO ȗU. For a Maxwell material, +(�) = &−� and E+/EU = ȅ−�. We consider the
case where we start the oscillation from rest at U = �. Then,

ȃ (U) = ȑ�
& TJO ȗU + ȑ�

ȅ

∫ U

�
EU′ TJO ȗU′ = ȑ�

& TJO ȗU − ȑ�
ȅ ȗ DPT ȗU + ȑ�

ȅ ȗ . (16.24)

This expression is valid for positive times. For negative times, ȃ = �. This is the same expression
we got in section 16.1.

16.4 Storage and loss moduli for a Maxwell material

To compute the storage and loss moduli, we subject a material to oscillatory stress and write the
response in terms of the amplitude and phase shift using the constitutive relation. We already worked
out the result two different ways.

ȃ (U) = − ȑ�
ȅ ȗ DPT ȗU + ȑ�

& TJO ȗU + ȑ�
ȅ ȗ . (16.25)
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To compute the storage and loss moduli, we need to write the strain in the form

ȃ (U) = ȃ̄ + ȃ� TJO(ȗU − Ȃ ). (16.26)

We use the trigonometric identity that

B TJO Y + C DPT Y =
√

B� + C� TJO(Y + Ȃ ), (16.27)

with UBO Ȃ =
C
B . (16.28)

This gives

ȃ (U) = ȑ�
ȅ ȗ + ȑ�

√
(ȅ ȗ )−� + &−� TJO(ȗU − Ȃ ), ; (16.29)

UBO Ȃ =
&

ȅ ȗ =
�

Ȓ. ȗ . (16.30)

Note that

(ȅ ȗ )−� + &−� =
�

&�

(
� +

( &
ȅ ȗ

)�)
=

� + UBO� Ȃ
&� . (16.31)

Then, we have

ȃ (U) = ȑ�
ȅ ȗ +

ȑ�
&
(
� + UBO� Ȃ

)
TJO(ȗU − Ȃ ). (16.32)

We introduce another trigonometric identity, UBO� Y = TFD� Y − �, to get

ȃ (U) = ȑ�
ȅ ȗ +

ȑ�
& DPT Ȃ TJO(ȗU − Ȃ ). (16.33)

From this expression, we see that

DPT Ȃ =
ȑ�

ȃ�& . (16.34)

So, the storage modulus is

&′ =
ȑ�
ȃ�

DPT Ȃ =
ȑ �

�
&ȃ �

�
. (16.35)

From equation (16.29), we have

ȃ� = ȑ�

√
(ȅ ȗ )−� + &−�, (16.36)

so

&′ =
�

& ((ȅ ȗ )−� + &−�)
=

&(ȅ ȗ )�

&� + (ȅ ȗ )� = & (Ȓ. ȗ )�

� + (Ȓ. ȗ )� . (16.37)

To find the loss modulus, we note that

TJO Ȃ = UBO Ȃ DPT Ȃ =
&

ȅ ȗ
ȑ�

ȃ�& =
ȑ�

ȃ� ȅ ȗ . (16.38)
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Then, the loss modulus is

&′′ =
ȑ �

�
ȃ �

� ȅ ȗ =
�

ȅ ȗ ((ȅ ȗ )−� + &−�)
=

&� ȅ ȗ
&� + (ȅ ȗ )� = & Ȓ. ȗ

� + (Ȓ. ȗ )� . (16.39)

A plot of the storage and loss moduli as a function of the oscillation frequency ȗ is shown in Fig. 29.
The storage modulus asymptotes to the Young’s modulus at high frequency. At low frequency, the
loss modulus is given by ȅ ȗ .

Figure 29: The storage and loss moduli (scaled by the Young’s modulus of the
elastic element) for a Maxwell material as a function of frequency.

16.5 Elastic and viscous elements

We can think of the Maxwell model diagrammatically as an elastic element in series with a viscous
element, as show in Fig. 30. When a constant stress is applied to the ends of the diagram, the elastic
spring responds instantly, while the viscous damper gradually releases this stress.

m

1

E

m

1

⌘

Figure 30: Diagram of a Maxwell material.

We could derive the constitutive relation from the diagram. The stress is the same throughout
the diagram, but the strains add. We can consider the stress and strain on each element, where the
subscript F denotes elastic and W denotes viscous.

ȑ = ȑF = ȑW (16.40)

ȃ = ȃF + ȃW. (16.41)
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We also have the familiar constitutive relation for individual elements.

ȑF = &ȃ (16.42)

ȑW = ȅ ȃ̇ . (16.43)

To derive the constitutive relation for theMaxwell material, we differentiate the above strain equation
(16.41) with respect to time.

ȃ̇ = ȃ̇F + ȃ̇W. (16.44)

Using the constitutive relations for the individual elements, we then have

ȃ̇ =
ȑ̇F
& +

ȑW
ȅ . (16.45)

But ȑ = ȑF = ȑW, so we have

ȃ̇ =
ȑ̇
& +

ȑ
ȅ . (16.46)

Multiplying both sides by ȅ gives the constitutive relation for a Maxwell material.

ȑ + Ȓ. ȑ̇ = ȅ ȃ̇ . (16.47)

We can construct other models from diagrams. The main idea is:

1) For elements in series, strains add and stresses are equal.

2) For elements in parallel, stresses add and strains are equal.

Linear viscoelasticity involves connecting these elements together taking the familiar linear constitu-
tive relations for each element.

16.6 The Kelvin-Voigt solid

Now, instead of considering the elastic and viscous elements in series, consider them in parallel, as
in Fig. 31. This is called the Kelvin-Voigt model. We can derive the constitutive relation using the
samemethod aswe just did for theMaxwellmodel. Because the elements are in parallel, their stresses
add and the strains are equal.

m

1

m

1

E

⌘

Figure 31: Diagram of a Kelvin-Voigt solid.

ȑ = ȑF + ȑW = &ȃ + ȅ ȃ̇ . (16.48)
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That was simple enough! We can now compute the creep function of a Kelvin-Voigt solid.

ȅ ȃ̇ + &ȃ = ȑ� Ȇ (U). (16.49)

We solve this by integrating factor.

ȃ (U) = ȑ�
&
(

� − F−U/ Ȓ.
)

Ȇ (U), (16.50)

giving a creep function of

+(U) = &−�
(

� − F−U/ Ȓ.
)
. (16.51)

So, for U ≫ Ȓ., +(U) → &−�, giving ȃ = ȑ�/&, the constitutive relation for an elastic solid. For
U ≪ Ȓ.,

+(U) ≈ �
& (� − (� − U/Ȓ.)) = U/ȅ , (16.52)

which we saw before is the creep function for a viscous fluid. So, for a Kelvin-Voigt solid, deformation
is initially resisted by viscous (frictional) dissipation until thematerial is eventually stretched as a solid.
Contrast this with a Maxwell material, which is liquid in the long time limit.

16.7 Jeffreys ƶuid

A Jeffreys fluid is a good linear viscoelastic description of cells and their cortices. It consists of a
Kelvin-Voigt element in series with a viscous element. As a result, at long time scales, the viscous
element dominates the dynamics and thematerial behaves like a viscous fluid. This is commonly seen
in cells at very long time scales, since the actin network have time to turn over and be reconstructed,
thereby giving liquid-like behavior. At very short times, frictional losses resist deformation as the
actin filaments slide against one another. At intermediate times, the cell responds elastically as the
intact filaments are compressed and stretched.

Cell cortices also consume energy and exert stress on themselves via activity of myosin motors.
This is called active stress. We therefore add an active stress element in parallel with the Jeffreys
fluid to model the active stresses exerted by the fluid. The resulting diagram is shown in Fig. 32.

m

1

m

1

m

1

m

1

m

1

⇣ ⇣

E E

⌘

�a �a

b)

Figure 32: Diagram of an active Jeffreys fluid.

To work out the constitutive relation, we recall our rules: elements in series have additive strains
and equal stresses and elements in series have additive stresses and equal strains. Thus, we have

ȑ = ȑB + ȑ+ (16.53)

ȑ+ = ȑ,7 = ȑW (16.54)
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ȃ = ȃ,7 + ȃW. (16.55)

Using the constitutive relation for Kelvin-Voigt and a viscous element, we have

ȑ+ = &ȃ,7 + Ȅ ȃ̇,7 = ȅ ȃ̇W = ȑW (16.56)

Now, differentiating equation (16.55), we have

ȃ̇ = ȃ̇,7 + ȃ̇W = ȃ̇,7 +
ȑ+
ȅ , (16.57)

where we have used the constitutive relation for a viscous element in the last equality. We can differ-
entiate again and rearrange to get

ȃ̈,7 = ȃ̈ − ȑ̇+
ȅ . (16.58)

Differentiating the constitutive relation for the a Kelvin-Voigt element, we have

ȑ̇+ = &ȃ̇,7 + Ȅ ȃ̈,7. (16.59)

We have from ȃ̇,7 from equation (16.57) and for ȃ̈,7 from (16.58), which gives

ȑ̇+ = &
(

ȃ̇ − ȑ+
ȅ

)
+ Ȅ

(
ȃ̈ − ȑ̇+

ȅ

)
. (16.60)

This can be rearranged to give

ȑ+ + Ȓ� ȑ̇+ = ȅ ( ȃ̇ + Ȓ� ȃ̈ ), (16.61)

with Ȓ� = (ȅ + Ȅ )/& and Ȓ� = Ȅ/&. We have ȑ+ = ȑ − ȑB, which gives

ȑ − ȑB + Ȓ�( ȑ̇ − ȑ̇B) = ȅ ( ȃ̇ + Ȓ� ȃ̈ ), (16.62)

the constitutive relation for an active Jeffreys fluid. In the homework, you will compute the creep
function and the storage and loss moduli for this material, a commonly used model for cells.
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