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1 What is Physical Biology of the Cell?

You are enrolled in a class entitled Physical Biology of the Cell. An obvious first question to ask is,What
is Physical Biology of the Cell? Perhaps this is best answered by considering an example.

1.1 Nucleosome wrapping

In eukaryotes, DNA is packaged in the nucleus in chromosomes. The chromosomes consist of con-
densed chromatin fibers. The chromatin fibers are made of packed nucleosomes. A nucleosome con-
sists of an octameric histone andDNAwrapped around it. The histone is about 8 nm in diameter, and
the DNA wraps around it almost twice. Approximately 147 base pairs of DNA are wrapped around
this complex.

These facts about nucleosomes raise important questions. How does wrapping happen? How
stable are the wrapped structures? What are the dynamics of the wrapped DNA on the histone (i.e.,
how does it “breathe?”)? What do we need to know to be able to answer these questions?

• What is the energetic costs of bending the DNA?

• What is the interaction energy between the DNA and the nucleosome core complex?

• What is the magnitude of the electrostatic repulsion of the DNA?

• What is the geometry of the contacts?

• What other factors (such as reader-writer and code-reader complexes) may be in play in vivo?

These are all physical questions and they demand physical approaches.

Let’s talk about some of the approaches we could take. First, we could do a full all-atom molec-
ular dynamics simulation. If we have a big enough computer, good enough force fields, and accurate
enough structural information, we can just integrate equations of motion and get at the dynamics.
This was done in Ettig, et al., Biophys. J., 101, 1999–2008, 2011. While impressive, the limits of com-
putation mean that we can only simulate 10s of nanoseconds. Furthermore, electrostatics are hard to
treat.

As an alternative approach, we could do a simulation in which the nucleotides and amino acids in
the proteins are coarsened into beads that interact with each other via harmonic andMorse potentials.
This was done in Voltz, et al., Biophys. J., 102, 849–858, 2012. They found some long-lived DNA
detachments and discovered that the so-called H3 tail of the histone was an important player in these
detachments.

1.1.1 A coarsened approach to DNA bending

While these computational approaches are useful and yield insight, we might want to zoom out some
more to get a broader picture of nucleosome construction. Let’s treat the DNA as a semiflexible fila-
ment. That is, it is an elastic rod that can bend, but resists doing so.1 With this coarsened treatment,
we can use some of the knowledge about elastic rods that structural engineers have known for a long

1We will talk about semiflexible filaments in much greater depth later in the course.
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time. Specifically, the bending energy of the segment of DNA of length ℓ around the histone is given
by

Ebend

ℓ
=

1
2

EIC2. (1.1)

Here, E is the Young’s modulus, I is the moment of inertia, and C is curvature. We will discuss these
terms in depth later in the course, but for now we mention that a larger Young’s modulus means that
the rod is harder to bend, and the moment of inertia is a function of the cross-sectional geometry of
the filament. The curvature is the inverse of the radius of curvature, R. We often define the flexural
rigidity K as K = EI. Then, we have

Ebend

ℓ
=

1
2

K
R2 . (1.2)

What is the flexural rigidity of DNA? This is sometimes easier thought of in terms of a persistence
length. The persistence length, ξ p, can be defined as the length scale where the bending energy is of
the same magnitude as the thermal energy kT.

Ebend ≈ kT =
K
ξ p

, (1.3)

which gives K = ξ pkT. So,

Ebend

ℓ
=

1
2

ξ pkT
R2 . (1.4)

So, we now have a way to estimate the bending energy. We only need to know the persistence
length of DNA, which was measured by elegant single molecule experiments in the early 90s to be
about 50 nm. The base stack height in DNA, known from crystal structures, is 0.34 nm. Since 127
base pairs are bent around the histone (147 base pairs go around the histone in total, but the ten base
pairs on each end are straight), we have 43 nm of bent wrapped DNA. The radius of curvature is
R ≈ 4 nm, since the histone core is about 8 nm in diameter. Finally, the thermal energy kT is about
4.1 pN-nm (piconewton-nanometers) at physiological temperatures. We have all the pieces we need.

Ebend ≈ ℓ

2
ξ pkT
R2 ≈ 43 nm

2
50 nm · 4.1 pN-nm

(4 nm)2 ≈ 275 pN-nm ≈ 65 kT. (1.5)

So, we already know that the binding energy between the histone and the DNA filament must be
more than 65 kT, or 275 pN-nm.

1.1.2 The energetics of DNA-histone interactions

From crystal structures, we know that theDNAcontacts the histone in theminor groovewhen it faces
inwards. Thus, we have histone-DNA contact every helical twist, or about every 10 base pairs. There
are then 14 total contacts. Assuming they are all about the same, we have 14 times the interaction
energy of a single contact contributing to the DNA-histone binding energy.

Polach and Widom did an ingenious experiment to measure this binding energy. They wrapped
sequences of DNA around a histone and then put the nucleosome complexes in a solution with re-
striction enzymes that cleave the DNA at a specific point if that point is not bound to the histone.
They then looked at the probability of a segment of DNA being unwound, which is possible because
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this probability is proportional the rate of cleavage. This, in turn, is proportional to e−nEnet/kT, where
Enet is the free energy of binding of one site of the DNA to the histone and n is the number of points
that need to be unbound to unwind the DNA. Note that this is the net binding energy that includes
all energetics, including the DNA bending energy. They found that the rate of cleavage for cut points
in the middle of the wrapped DNA were about 4 or 5 orders of magnitude greater than for cut points
at the ends. So, we can compute the free energy of binding a single site, knowing that a single site
becomes unbound for cleavage at the end of the wrapped DNA and seven sites become unbound for
a site at the center.

e−Enet/kT

e−7Enet/kT = 10−4 or 10−5. (1.6)

This gives Enet ≈ 1.5–2 kT ≈ 6–8 pN-nm. Multiplying this by the 14 sites gives the total binding
energy as

Etot ≈ 28 kT ≈ 112 pN-nm. (1.7)

Therefore, the binding energy, exclusive of DNA bending is about 65 kT + 28 kT ≈ 90 kT, or about
6 kT per binding site. So, more than 2/3 of the binding energy is spent just bending the DNA around
the histone. Furthermore, the total binding energy is only 6 kT per site, so thermal fluctuations can
result in significant “breathing” of the complex.

1.2 This is Physical Biology of the Cell

What we just did is physical biology of the cell. We took a biological problem and took a quantitative,
physical approach to solving it. We build a simple, treatable model that is sufficient for our question
(a rigid beam wrapped around a cylinder with point-contacts). The model allows use to measure
parameters.

This approach allows us to:

• Define and measure parameters.

• Generate falsifiable predictions.

• Bridge concepts across length and time scales.

• Deal with complexity. We choose appropriate models for the desired level of detail.

• Illuminate life’s constraints. Life, like everything, is bound by the laws of physics.

• Make synthetic biology possible. The ability to make predictions about how systems will be-
have, as physics can do, enables engineering.

1.3 What Physical Biology of the Cell is not

What will we not be doing in this class?

• Biology with some math. All too often, a biologist will do some great work and then throw in
somemath because it is sexy and will get their paper in a better journal. We are only interested
in learning about biology if and when physical models are necessary.
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• Biology-inspired physics. Physical questions often arise from biology. These are often very
interesting to physicists and useful for exposing undiscovered physical principles, but do not
explain biological phenomena. These are great studies, but not what wewill do here. Wewant
to learn about biology.

• Model-making for understood systems. This is kind of like “biology with some math.” We
do not need to invent models unless we are trying to gain a deeper understanding. Making a
model that happens to match already measured and understood results is superfluous (and
often part of research teams hunting for a more prestigious journal for their paper).
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2 Principles of estimation

Aswe discussed in the first lecture, one of ourmain aims in this course is to develop a sense of biologi-
cal numeracy. A great way to do this is by performing estimates and back-of-the-envelope calculations
about cells. Indeed, detail can often get in the way. For example, I may ask you if you prefer to fly or
drive from Pasadena to San Francisco. You can hire a rideshare to Burbank, take a Southwest flight
to Oakland, and then take the BART to San Francisco. The rideshare takes about 20 minutes, the
flight about an hour, the BART takes about 20 minutes, and you have about an hour at the airport
in Burbank and about 30 minutes at Oakland to get to the BART. In total, this is about 2.5 hours.
Driving takes 5.5 hours without traffic, so you will choose to fly. Now, if we did this calculation trying
to estimate how many minutes it takes for the Lyft driver to come, precisely how many minutes in
baggage claim, etc., the calculation becomes cumbersome. Maybe more accurate, but you will still
get more or less 2.5 hours to fly to San Francisco. It’s easier, and more intuitive, to ignore all the little
ins and outs. You end up with good intuition on how long things take nonetheless.

2.1 How many ribosomes in an E. coli cell?

Let’s start learning about bacterial cells by performing a simple estimate: how many ribosomes are
there in a single E. coli cell? We will take as given two pieces of data, a microscope image of an E. coli
cell and an image of the growth rate, shown in Fig. 1, taked from PBoC2 Fig. 3.8.

Figure 1: A) Frames from a time lapse movie of bacterial growth with thresholding-
based segmentation. B) A plot of the corresponding area of bacteria in the image as a
function of time.

From the microscope image, we see that a single E. coli cell is about two microns long and one
micron wide. From the growth curve, we see that the doubling time of E. coli in these conditions is
about 45minutes, or about 3000 seconds. Notice that I roughly estimated these values. 3000 seconds
is 50 minutes, not 45, but we do not get bogged down in small differences like that.

At face this seems like a daunting task, estimating the number of ribosomes from only an image
and a growth curve. But it is not so daunting if we divide the question up into smaller, more tractable
(and less intimidating) questions. We can make a series of guesses to get us from what we know (the
size of a cell and growth rate) to something else we want to know (the number of ribosomes).

Cell size (known).

1. Estimate: Cell density→ Cell mass.

2. Estimate: Dry weight fraction→ Cell dry mass.
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3. Estimate: Fraction of dry mass that is protein→ Cell protein mass.

4. Known: Cell division rate→ Protein production rate by mass.

5. Estimate: Mass of amino acid → Protein production rate in units of AAs incorporated per
second.

6. Estimate: Rate of ribosome function→Number of ribosomes.

Let’s start estimating!

1. What is the cell density? A reasonable estimate is that it is close to that of water, which is 1 g/mL.
We don’t know the density, but we can lie skillfully to guess that it is the same as water. This is not
a bad guess. To get the mass of a cell, we use our knowledge about its size. The volume of an E. coli
cell is

V ≈ π(1/2 μm)2 × 2 μm ≈ 1 μm3 = 1 fL. (2.1)

Note that the volume is closer to 1.5 μm3, but for our rough estimates, we’ll keep our numbers clear,
and approximate this as one cubic micron, or one femtoliter. This is a nice number of keep around.
The volume of a single E. coli cell is about one femtoliter.

Now that we have the volume and density, we compute the mass to be 10−12 grams, or one
picogram, another useful number to keep in your head.

2. Now that we have the mass of the cell, how much of that is water? This is a bit tricky. You may
have heard that your body is 80% water from popular lore. That’s not actually that far off, and you
could go ahead with your estimates taking that the E. coli cell is about 20% dry mass, or 0.2 pg.

Another option I considered it to recall my training from chemistry classes where I looked at
closest packing of spheres. I remember that the fractional void volume of closest packed spheres is
1 − π/

√
18, or about 25%. (I have no idea why that stuck in my head.) That’s for closest packed

spheres, but things need to diffuse around in the cell, so the void volume is probably more than that,
say two or three times that. So, we’ll say that the solid material takes about one-third of the total cell
volume. 33% is not too different from 20%, and we’ll use 33% going forward.

This tactic in our educated guesswork, where we use any knowledge that happens to be in our
head, is called guerrilla warfare.

3. Howmuch of this drymass is actually protein? In a cell, proteins domost things and have longer
lifetimes than, say, RNAs. So, let’s guess that about half of the dry mass is protein, so about 1/6 of
the total cellular mass is protein, or about 15%. This gives a protein mass of 0.15 pg.

You might think that this is nuts. I’m making guesses seemingly off the top of my head. But this
exposes an important principle of educated guess work: Fear not!, lest you be paralyzed. Sometimes
you need to make these guesses to move forward. Just do it, and cross-check later.

4. From the plot of the growth curve, we estimated thatE. coli under those conditions divided every
45 minutes. Thus, each cell needs to produce 0.15 pg of protein every 45 minutes. Forty-five minutes
is about 3000 seconds, so the bacterium needs to produce 5 × 10−5 pg of protein every second.
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For convenience, let’s work in mass units of Daltons. We have

5 × 10−5 pg/s × 1 g
1012 pg

× 6 × 1023 Da
1 g

≈ 3 × 107 Da/s. (2.2)

5. How many amino acids are there in 3 × 107 Daltons worth of protein? A typical amino acid
has a nitrogen, two carbons, two oxygens, and a side chain. The nitrogen contributes 14 Daltons,
the carbons 24, and the oxygens 32, for a total of 70 Daltons, exclusive of hydrogens and side chains.
We’ll estimate that the side chains, on average, bring the mass of each amino acid up to about 100 Da.
So, the bacterium incorporates about 3 × 105 amino acids into proteins per second.

6. We are now left to estimate the rate at which ribosomes function. This is a hard one to guess.
If we guess it to be too slow, the cell will fill up with ribosomes, which sets a hard lower bound on
this guess. To make this guess, I will use the fact that diffusion-limited chemical reactions between
proteins tend to proceed with rate constants around 100 to 1000 s−1. There are several reactions that
have to happen to add an amino acid to a protein, including diffusion of the tRNA into the pocket of
the ribosome, formation of covalent bond, vacation of tRNA, moving the DNA strand forward etc.
These are also big complexes, so I will estimate the rate to be an order of magnitude slower, about 10
AAs per second.

So, if the bacterium incorporates 3×105 amino acids into protein per second, and each ribosome
does this at a rate of about 10 amino acids per second, there are about 30,000 ribosomes in an E. coli
cell. And we have arrived at the estimate we sought.

2.2 Principles of estimation

We have performed an estimate of the number of ribosomes in an E. coli cell. In doing so, we have
navigated some seemingly dangerous waters, but in the end emerged with an estimate quite close to
the reported value.

As you do more estimates, there are some principles of estimation to keep in mind.

1. Fear not!
It is all too easy to be paralyzed and be afraid to make an estimate because it is too crude or
you are not sure enough. Just do it! You can always come back later and refine.

2. Divide and conquer.
We just saw that it is easier to break the problem down into smaller, easier estimates. This is
a key strategy for tackling what might be at first glance a really tough quantity to estimate.

3. Talk to your gut.
When you are making estimates, ask yourself, “Does this feel right?”. Somehow your collec-
tion of experiences in your life can help you have a good gut feel for things.

4. Lie skillfully.
Do you know the density of E. coli? Probably not. But you can lie and say it’s the same as
water. And this is a good lie, because it’s not far from the truth, and you know it’s not far from
the trust. This is a good, skillful lie. Such lying will help you with your estimates.

5. Guerrilla warfare.
Use everything available to you!
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6. Cross-check.
After making an estimate, try making it using another divide-and-conquer strategy. If the two
estimates do not match, it is time to check what may have messed things up. Such inconsis-
tencies are a great way to find flawed (and good) logic.

2.3 More practice

It’s common to have questions pop in your mind when making estimates. Now that you have in your
mind the number of ribosomes in an E. coli cell, try approaching these questions.

1. What fraction of the protein material in an E. coli cell is made out of ribosomes?

2. Howmany mRNA transcripts are there in an E. coli cell at any given time? With this number,
how many mRNAmolecules are there per gene?

3. How does the mass of mRNA in an E. coli cell compare to that of DNA?

4. How does the mass of ribosomal RNA compare to that of mRNA and DNA?

There are many ways to approach these practice problems. Here are the approaches I
took.

What fraction of the protein material in an E. coli cell is made out of ribo-
somes? A typical protein is about 300 amino acids, giving a mass of about 3 × 104

Da. Ribosomes contain about 50 proteins, so their mass is about 106 Da. (The real value
is about three times this.) With 30,000 ribosomes, this amounts to 3 × 1010 Da in ri-
bosome protein mass. We already worked out that the total protein mass is about 0.15
pg, which is about 1011 Da. By our estimate, then, a third of protein in an E. coli cell
are ribosomes. If we take the actually molecular mass of ribosomes, we get that almost
all protein is ribosomes. So, the cell is basically just a ribosome factory during optimal
growth conditions!

How many mRNA transcripts are there in an E. coli cell at any given time?
We can approach this problem from above and from below. As an upper bound, we
can imagine that each mRNAmolecules is a single ribosome attached to it. This would
mean we have 30,000 mRNA molecules as an upper bound. As a lower bound, we can
imagine that each mRNAmolecule is completely covered in ribosomes. To perform the
calculation, then, we need to know the width of a ribosome and the length of an mRNA
transcript.

A ribosome has a “volume” of about 50 proteins, so it has a diameter of about
3√50 ≈ 4 proteins. Proteins are typically a few nanometers across, so a ribosome is
about 12 nanometers across. At least half of the ribosome is rRNA, which we have not
yet considered so we’ll double this number to about 20 nm.

To compute the length of anmRNA transcript, we note that the stack height of RNA
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is about 0.4 nm. If a typical protein has 300 amino acids, this means there are about 900
mRNA bases, for a total length of about 500 nm.

So, if the ribosomes completely cover themRNA,we have a total length of 30, 000×
20 nm = 600,000 nm worth of mRNA. This amounts to about 1000 mRNA molecules.
So, there is somewhere between 103 and 104 mRNA molecules. We can take the geo-
metric mean to get that we have about 3,000 mRNA molecules in an E. coli cell. BNID
100064 says that there are about 1400, closer to the lower bound, suggesting that the
mRNA molecules are densely decorated with ribosomes, which is what we would ex-
pect for a rapidly (efficiently) growing cell.

Since E. coli has about 5000 genes, there are only about 0.2 copies of mRNA per
gene in E. coli.

How does the mass of mRNA in an E. coli cell compare to that of DNA?
RNA andDNA have similar molecular masses per base, with mRNA being a bit heavier.
We’ll take them to have the same per base mass. The genome is about 4.6 million base
pairs, or about 10 million DNA bases. If we have 3,000 mRNA molecules, each with
about 900 bases, we have about 3 million RNA bases. So, the mass of DNA is about
three times than of mRNA. Here we have neglected multiple copies of the genome due
to multiple replication forks.

How does themass of ribosomal RNA compare to that of mRNA andDNA?
If we compare total RNAmass to DNAmass, we need to consider also the rRNA. Each
ribosome is about half rRNA and has a molecular mass of about 3× 106 Da. So, there is
about 106 Da of rRNA in a ribosome, giving about 3 × 1010 Da of rRNA in the 30,000
ribosomes in the cell. Each base is about 300 Da, giving a total of about 108 bases worth
of rRNA. This is a couple orders of magnitude bigger than the amount of mRNA in the
cell, and an order of magnitude bigger than the DNAmass.
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3 Mathematizing cartoons

The word “model” in biology has many meanings. There are three main ones, so far as I can tell.

Cartoon models. These models are the typical cartoons or qualitative verbal descriptions we
see in text books or in discussion sections of biological papers. They are a sketch of what we think
might be happening in a system of interest, but they do not provide quantifiable predictions.

Physical models. These models give quantifiable predictions that must be true if a hypothesis
(which is often sketched as a cartoon) is true. Sometimes hard work and deep thought are needed to
generate quantitative predictions. This often requires “mathematizing” the cartoon. This is how a
physical model is derived from a cartoon. Oftentimes when biological physicists refer to a “model,”
they are talking about a physical model.

Generative statistical models. A generative statistical model specifies how we expect mea-
sured data to be generated using the language of probability. Specifically, it describes how the mea-
surements are expected to vary from the physical model because of measurement noise and other
sources of variation.

In this class, we will be working mainly on physical models. The connection of these models to
their respective cartoons is of paramount importance. We often think of biological systems in terms
of the cartoons, and we need to understand what parameters and what quantifiable measurements
result from the cartoons. Perhaps most importantly, we need to know what falsifiable hypotheses
follow from a cartoon.

In this lecture, we will learn how to go from a cartoon to a physical model. The authors of PBoC2
call this “mathematizing a cartoon.” We will do this mainly by example, and you will get a chance to
practice other examples in the homework throughout the course.

There is a companion Jupyter notebook to this lecture that has the details of the numerical cal-
culations.

3.1 Flagellar growth and length control in Chlamydomonas reinhardtii

Wewill cut our physicalmodeling teeth on a beautiful system: the growth of flagella inChlamydomonas
reinhardtii. Chlamydomonas has two flagella of the same length that it uses to swim. These flagella are
constructed frommicrotubules arranged in a fascinating structure called an axoneme. The flagella are
thought to be built by motor proteins that shuttle tubulin dimers from the bulk cytoplasm along the
microtubules of the flagella to the ends, where they are incorporated into the microtubules. At the
same time, there is spontaneous disassembly at the tip of the microtubules.

3.1.1 Our first try: a simple model

As a first try at modeling assembly, we assume the motors deliver tubulin to the tip of the flagellum
at a constant rate β and that the microtubules depolymerize at a constant rate α . Then, the length
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packaged into smaller IFT trains (with a smaller tubulin carrying
capacity) as the length of the flagellum increases (Engel et al.,
2009). The length independence of the total IFT protein content
can be explained if the same cycling IFT proteins must be
retrieved from the flagellar tip in order to form new trains. This
retrieval for individual particles would take longer as the flagellar
length increases, decreasing the amount of IFT protein available
for redeployment at any given time. However, there is currently
no direct evidence for such a restriction of IFT protein exchange,
and so we must consider how the quantity of IFT protein could be
held constant if IFT proteins are constantly moving in an out of
the flagellum. Moreover, a simple model in which an initial bolus
of IFT protein is confined within the flagellum does not explain
the remodeling of trains as a function of length. It therefore seems
likely that the flagellum will employ some sort of length sensing
or measuring mechanism to adjust the quantity of IFT particle
proteins that are imported into the flagellum.

Some candidates have been implicated in regulating this type
of sensing mechanism. Recent evidence has shown the critical
function of the Cep290 protein. Cep290 is a Meckel syndrome
associated protein that is located at the transition zone and
appears to regulate levels of IFT complexes and ciliary entry of
membrane associated proteins (Craige et al., 2010). Cep290
appears to be involved in membrane attachment to the transition
zone. The gating activity of Cep290 may be regulated by its

associated protein CP110. CP110 restricts cilia formation and
requires the interaction with CEP290 for this function (Tsang
et al., 2008). One model of ciliary entry based on import of the
Kif17 ciliary motor involves the shuttling of cilium-targeted
proteins by the nuclear import protein, importin b2 (Dishinger
et al., 2010). In this model, cargo is released into the ciliary
compartment due to displacement on importin by GTP-bound
Ran GTPase. An enrichment of RanGTP in the cilium is thought to
give rise to ciliary import. Other proteins thought to regulate
ciliary gating are the septins, which were shown to form a
membrane diffusion barrier (Hu et al., 2010). Recently, the idea
of a septin diffusion barrier has been challenged by the proposal
that proteins are excluded from the cilium by anchoring to the
cortical actin cytoskeleton (Francis et al., 2011).

Several findings must be addressed in order to further evaluate
the balance point model and alternative models involving feedback
mechanisms. The following two sections highlight recent identifi-
cation of modulators of flagellar length that involve direct mod-
ification of IFT or axoneme stability (Section 3.2) and signaling
mechanisms that can induce ciliary length changes (Section 3.3).

3.2. Length regulation related to axoneme modification

Because of recent explosion interest in regulation of ciliogen-
esis and ciliary length, a great deal more is known about proteins
essential for maintenance. Some of these proteins modify
mechanics of IFT, thereby axonemal assembly and elongation.
Others directly alter microtubule stability by altering post-trans-
lational modification state. In addition to the mechanisms that
can directly alter axoneme formation or stability, a great many
signaling pathways can also alter the percentage of ciliated cells
in a population or alter ciliary length (see Section 3.3) by
unknown mechanisms. It is possible that the pathways regulating
direct axoneme assembly involve yet unidentified downstream
effectors of altered signaling. A summary of ciliary length altering
proteins can be found in Table 1.

One class of proteins known to directly regulate axoneme
structure includes both cilia specific and cilia non-specific micro-
tubule motors. Anterograde motors such as the members of the
Kinesin-2 and -3 family described in Section 2.3 are required for
axoneme formation and result in shortened or absent cilia in mice
(Takeda et al., 1999), C. elegans (Cole et al., 1998; Morsci and Barr,
2011; Perkins et al., 1986; Snow et al., 2004) and Chlamydomonas
(Cole et al., 1998; Kozminski et al., 1995) among others when
disrupted. As discussed previously, in Leishmania and Giardia, micro-
tubule depolymerizing Kinesin-13 promotes flagellar disassembly
(Blaineau et al., 2007; Dawson et al., 2007), but this kinesin appears
to be required for proper flagellar regeneration as well in Chlamydo-
monas (Piao et al., 2009). In addition to kinesins, dyneins also play a
role in ciliary length regulation. A light chain of cytoplasmic dynein,
Tctex-1, is responsible for restricting cilia length. Loss of this subunit
results in increased cilia length (Palmer et al., 2011). Retrograde
intraflagellar transport is mediated by cytoplasmic dynein-2. In
Tetrahymena, loss of dynein-2 results in lengthened cilia (Asai et al.,
2009; Rajagopalan et al., 2009). Decreased expression of a dynein
intermediate chain, d2lic, by blocking its transcription results in
abnormally short nodal cilia (Bonnafe et al., 2004).

Alteration of intraflagellar transport proteins has also been
shown to prevent proper cilium formation. A murine hypomorph
of IFT88 called Tg737orpk results in shortened kidney cilia and is a
model for polycystic kidney disease (Pazour et al., 2000). The
small GTPase Arl-13 appears responsible for coupling IFT com-
plexes A and B. Its loss results in short cilia, an effect that may be
rescued by another GTPase Arl-3 (Li et al., 2010). IFT70, a complex
B component which binds directly to IFT46, is essential for
flagellar assembly (Fan et al., 2010). Defects in IFT170, a complex

assembly 

disassembly 

length 
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te

s 

Fig. 1. Limiting-precursor and balance-point models for length control.
(A) Limiting-precursor model, in which a fixed number of structural subunits
(blue squares) contained with the cell (green circle) are incorporated into the final
structure thus fixing its length by their initial quantity. (B) Axonemal tubulin
dynamics underlying balance-point model. Tubulin subunits (blue squares) are
synthesized in the cytoplasm and transported out to the tip of the cilium by
intraflagellar transport (orange circles) where they assemble at the tip. Assembly
at the tip is balanced by continuous disassembly of subunits from the tip, which
are then returned to the cytoplasm. A putative pore or gate regulating entry of
ciliary proteins and IFT proteins is indicated by a red dotted line. In this
framework, steady-state length is achieved when the rates of assembly and
disassembly are equal. (C) Balance point model for length control. Disassembly
(red dotted line) is length-independent based on measurements of flagellar
resorbtion in the absence of assembly. Assembly is a decreasing function of length
because each IFT particle takes longer to move out to the tip as the length
increases, and thus delivers cargo less efficiently. Because the number of IFT
particles is fixed, independent of length, the overall efficiency of IFT is a decreasing
function of length (green curve). The unique length where the two rates balance
(blue arrow) is predicted to be the steady-state length of the cilium. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

P. Avasthi, W.F. Marshall / Differentiation 83 (2012) S30–S42S34

Figure 2: A cartoon sketch of the balance point model. Motor proteins (Orange cir-
cles) transport tubulin (blue squares) and other necessary axoneme growth elements
to the distal tip of the flagellum. There is spontaneous disassembly at the tip. Figure
taken from Avasthi and Marshall, Differentiation, 83, S30-S42, 2012.

of the flagellum, measured in units of number of added tubulin dimers is described by the differential
equation

dℓ
dt = β − α . (3.1)

The solution to this differential equation is

ℓ(t) = ℓ0 + (β − α )t. (3.2)

This model is obviously flawed because the flagellum would grow without bound with β > α
and would shrink to nothing with β < α . So, by mathematizing the model, we have immediately
exposed a certain model as unfeasible.

3.1.2 A refinement: the “balance point model”

Marshall and Rosenbaum (2001) proposed a refinement on our first simple model. They noted that
there are a constant number of motor proteins present in the flagellum as it grows. So, the density of
motors is greater early on in the growth (when it is short) and more sparse later on (when it is long).
We might estimate that the rate of delivery of material to the tip of the microtubule is then propor-
tional to the motor density, ρ = NIFT/ℓ, where NIFT is the constant number of particles involved in
intraflagellar transport (IFT). Now, the dynamics read

dℓ
dt = β/ℓ− α , (3.3)
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where we have wrapped constants into the parameter β such that β ∝ NIFT. Now, we have a unique
steady state length of β/α . Let’s look at this equation and see what it tells us about the dynamics of
microtubule growth.

It of often good practice, especially when doing a numerical solution, to nondimensionalize the
equations first. This limits the number of parameters we need to vary. For the balance point model,
we have two parameters, β and α , which have units of length squared per time and length per time,
respectively. We can then construct a characteristic length scale β/α and a characteristic time scale
β/α 2. We define dimensionless length ℓ̃ via ℓ = β ℓ̃/α and dimensionless time t̃ via t = β t̃/α 2.
Substituting these expressions into the balance point model gives

dℓ̃
d̃t

= ℓ̃−1 − 1. (3.4)

It’s useful to analyze the differential equation to get some qualitative features. We have already
established a unique steady state of ℓ̃ = 1. Because the derivative positive for all ℓ̃ < 1 and negative
for all ℓ̃ > 1, the flagellar length proceeds monotonically toward the steady state. We can rewrite
the differential equation in terms of the distance from the steady state, ε = 1 − ℓ̃. Making this
substitution gives

dε
d̃t

= − ε
1 − ε . (3.5)

The flagellum approaches the steady state slowly2, with the distance from the steady state, ε , de-
creasing like ε/(1 − ε ). At short times, we get incredibly fast growth. This is unphysical, since our
assumption of constant IFT particle concentration breaks down as the flagellar length goes to zero (as
this would result in infinite IFT particle concentration). This is a common feature of mathematical
models. They have a region of validity, in this case for ℓ not too close to zero.

The solution to the differential equation results in either a transcendental equation for ℓ̃ or use of
the Lambert-W function. Either way, the solution is ugly and not terribly informative. I am generally
of the opinion that solving differential equations is only useful if the solution provides some insight
or enables taking of some limit. When the only interpretable result we can get out of an analytical
solution is a plot, we are equally well-served by solving the differential equation numerically.

3.1.3 The balance point model and experiment

Engel, Ludington, andMarshall (Engel, et al., J. Cell Biol., 187, 81-89, 2009) measured the growth of
flagella after pH shock, which eliminates the flagella. I digitized their result from Fig. 1 of that paper
and performed a nonlinear regression using the balance point model. The details of the calculation
can be found in the companion Jupyter notebook to this lecture. The results are shown in Fig. 3 This
provides evidence that the balance point model might be describing microtubule growth dynamics.

3.1.4 Testing the balance point model

The balance point model, as we have formulated it, assumes each flagellum is independent of all
others. Therefore, if we sever one flagellum and watch it grow back, the other flagellum should be

2This is slower than exponential, since the Taylor series of ε/(1 − ε ) is
∑∞

n=1 ε n.
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Figure 3: Curve fit of the balance point model to the data digitized from the Engel, et
al., paper. The best fit parameters as α = 0.23 μm/s and β = 2.74 μm2/s.

unaffected under the model. Ludington and coworkers devised a clever experiment in which they
trapped individual Chlamydomonas cells using a microfluidic device and then used a laser to sever one
of the flagella (see Fig. 4).

syringes prior to mounting under the coverslip to induce
flagellar detachment. With such methods, the experimenter
cannot choose which flagellum will be amputated, raising
potential concerns that the flagellum that happened to pop
off might be somehow different compared to the other
flagellum. As an alternative approach, we used a femtosecond
infrared (IR) laser at 110 mW of power after the objective (see
Figure S1 available online) to cut individual flagella on trapped
cells. After laser severing, the remaining stump immediately
detached regardless of where the laser cut the flagellum along
its length (Figure 1D). The fa1mutant, which prevents flagellar
excision during pH shock [8], retained the injured flagellar
stump after laser severing of the distal portion of the flagellum
(however, these cells died without any regeneration), suggest-
ing the same pathway that mediates pH induced deflagellation
also mediates laser-induced deflagellation. Targeting the cell
body with the same laser power induced cell death, whereas
targeting anywhere outside the cell had no effect on the cell
or flagella.

Whenwe observed cells trapped in themicrofluidic chamber
following severing of one flagellum, we found that the long-
zero response was easily observed (Figures 2A and 2B). We
can thus reproduce the basic phenomenon that was previ-
ously observed in paralyzed cells trapped under coverslips
but with several important advantages: the cells are geneti-
cally WT, they are grown under continuous fluid flow, they

are not mechanically compressed, and we can choose which
flagellum to target with the laser.

Overshoot Behavior Does Not Occur in Microfluidically
Trapped Cells
With the laser-based method for measuring the long-zero
response, we next investigated a key result in the existing liter-
ature—the ability of the shortening flagellum to become
shorter than the growing flagellum, a phenomenon variously
described in the prior literature as ‘‘overshoot’’ and ‘‘under-
shoot’’ [6, 9]. These previous reports indicated that while
most cells with an amputated flagellum directly equalized the
lengths of the regenerating and uninjured flagella to roughly
2/3 full length, some fraction of the cells with an amputated
flagellum shortened their uninjured flagellum to a length signif-
icantly shorter than the regenerating flagellum, ‘‘overshooting’’
the length before eventually recovering [6]. Overshoot requires
that the two flagella be in distinct operational states when their
lengths become equal, because one continues to shorten and
one continues to grow after reaching equal lengths. An
induced shortening program can explain this observation
because a cell could independently activate shortening in
one flagellum and not the other. If not stopped in time, the
shortening would cause the long flagellum to overshoot the
length of the regenerating flagellum. But in a constitutive
model, two flagella of the same length should have the same

A B C

D

Figure 1. Microfluidic Trapping and Laser-Microsurgery Allow Selective Deflagellation of Chlamydomonas Cells

(A) A custom-designed microfluidic chamber traps motile cells and holds them in place using continuous flow of fresh media at 7 mm/s.
(B) Zoom view of the red box in (A).
(C) Side view of one cell in (B).
(D) Laser microsurgery on individual flagella induces cells to eject injured but not uninjured flagella. Red dashed line indicates the laser-targeting site. White
arrowheads indicate where the flagellum was ejected from the cell body at the flagellar base. Green arrowhead indicates where the laser cut the flagellum in
two. Cell diameter is w5 mm.

Current Biology Vol 22 No 22
2174

Figure 4: A) Schematic of microfluidic device for trapping of individual Chlamy-
domonas cells. B) Trapped cells and laser ablation setup. Figure take from Ludington,
et al., Curr. Biol., 22, 2173–2179, 2012.

Ludington and coworkers instead saw that the length of the non-severed microtubule shrank
while the other grew, as shown in Fig. 5 This means that the two are not independent.

3.1.5 Updating the balance point model

There is clearly some connection between the two flagella. What might this connection be? One
hypothesis is that the two flagella share a cytoplasmic pool of tubulin. Specifically, let n be the number
of axoneme components (which we’ll just call precursor for brevity) in the cytoplasm available for
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B C

D

Figure 2. Biflagellate WT Cells Exhibit a Single, Characteristic Behavior in Response to Single Deflagellation

(A) After laser-induced deflagellation of a single flagellum, the remaining long flagellum shortens while the ejected flagellum regrows. Once the two flagella
reach roughly equal length, they then both begin to grow back to near-WT length. Times are in minutes. Red line indicates laser targeting. White arrowheads
indicate the tip of the regenerating flagellum where it is more difficult to see in these still images.
(B) The flagellar length kinetics measured over time for a single cell, shown in (A).
(C) The flagellar length kinetics for 20 cells that underwent laser-induced single deflagellation at the same time in the same chamber show a characteristic
regeneration response.
(D) The regenerating flagellum never became longer than the unamputated flagellum, as seen by plotting the regenerating flagellum’s length against the
unamputated flagellum’s length for the cells plotted in (C). The dotted line indicates where the two flagella on a single cell are equal length.

Organelle Size Equalization
2175

Figure 5: B) Results from a single laser ablation-regrowth experiment. C) The re-
sponse of 20 cells who had flagella ablated simultaneously in the same microfluidic
chamber. Figure taken from Ludington, et al., Curr. Biol., 22, 2173–2179, 2012.

incorporation into the flagella. We will again use units of μm for n. Then the amount of precursor
that an IFT train at the base of the flagellum can pick up is a function of n. This is expressed in the
cartoon in Fig. 6

including the nucleus (Fig. 1D) (25, 26), nucle-
olus (27), and vacuoles (28, 29), show a scaling
behavior with cell size; that is, larger cells have
larger organelles. However, to our knowledge, no
specific size sensor of these organelles has been
identified. Thus, size control might arise even in
the absence of specific size sensors.

One way to achieve size control is to have
stereotyped growth, by which both organelle and
cell grow according to a preset plan. This seems
to be the case with centrosome number control
because the organelle’s duplication cycle is cou-
pled to the cell cycle. In a simple case of stereo-
typed growth, both cell and organelle would
grow at constant rates. Another way to achieve
scaling is allometric growth, in which organelle
growth is some constant fraction of cell growth;
in this case, the organelle will inherently be some
proportion of cell size. This could arise if both
organelle and cell growth were dependent on
overall metabolism.

The cell can also control size by synthesizing
a limited pool of precursor (30). Assuming that
an organelle grows until the pool is depleted, size
would be readily modulated by changing the
pool size. Fixed-precursor recruitment has been
proposed as a size-control model for the bacterial
flagellar hook, in which it is suggested that the
C-ring structure of the basal body would act as a
“measuring cup” to bind a fixed quantity of hook
precursor and then release this fixed precursor set
to allow assembly (31).

To determine whether these models apply, it
is useful to monitor the growth of the organelle
along with that of the cell. Stereotyped growth is
demonstrated if the growth trajectories fit to
standard growth models (i.e., constant or expo-
nential). Otherwise, a consistent pattern of growth
among different individuals or in successive cell

divisions might also indicate a preexisting plan.
In the case of allometric growth, there would be
a correlation between instantaneous cell and or-
ganelle growth rates. Although these simple mod-
els of growth result in inherent organelle-to-cell
size scaling, they are sensitive to perturbation be-
cause they do not include mechanisms for recov-
ery. To achieve that, growth of either the cell or
organelle must be tunable in some way with re-
spect to the relative size of the organelle.

Flagellar Length Control and the
Balance-Point Model
The eukaryotic flagellum has been studied in
detail as amodel system for organelle size control
(Fig. 3A). Flagellar length is dependent on com-
peting processes of assembly and disassembly,
both of which occur at the distal flagellar tip and
rely on the microtubule motor–based transport
of structural material, or intraflagellar transport
(IFT) (32), which carries tubulin to the growing
flagellar tip (33). When flagella are severed,
they regenerate with decelerating kinetics. The
rapidity of growth back to the original size argues
against a stereotyped growthmechanism for length
control, whereas decreased growth rate as the
flagella reach their final length is suggestive of
feedback control. In the biflagellate green alga
Chlamydomonas, when one flagellum is severed,
during its regeneration the other, intact flagellum
shortens until the two flagella reach equal lengths,
at which point they resume growth together (34).
This equalization of lengths seems to indicate that
the cell “knows” how long both its flagella are.

As further evidence of flagellar length sens-
ing, the frequency of injection of IFT material
into the flagellum from the cytoplasm changes as
a function of flagellar length (35). The motors
and associated proteins that drive IFT associate

into linear arrays known as trains, and, as a re-
generating flagellum becomes longer, the trains
become smaller but more frequent. The net effect
is that the total number of individual IFTsubunits
is roughly independent of length, but this is only
achieved by having the frequency and size of the
trains vary with length. So how does the IFT
system know how long the flagellum is?

As discussed above, one way for the cell to
know organelle size is having a dedicated re-
porter molecule whose state is sensitive to or-
ganelle size. The phosphorylation state of an
aurora-like kinase depends on flagellar length
(36), so it could act as a length sensor. On the
other hand, depletion of this kinase by RNA in-
terference (RNAi) has no effect on flagellar length
(37), raising the question of whether the cell uses
the information on length encoded by the kinase.
A complete feedback loop, in which length regu-
lates the state of a kinase whose function then
modulates assembly or disassembly, remains to
be found.

One likely output of any length reporter mol-
ecule would be regulation of IFT, a critical path-
way for maintaining flagellar length. The total
quantity of IFT material per flagellum is rough-
ly constant (32, 35). Consequently, the transport
rate should be a decreasing function of length,
because in longer flagella it takes longer for the
motors to reach the tip of the flagellum and de-
liver their cargo (Fig. 3B). Furthermore, disas-
sembly rate is length-independent (38), mediated
bymicrotubule-depolymerizing kinesins (39). Com-
bined with the length-dependent assembly rate,
this constant disassembly gives a unique steady-
state solution for length (Fig. 3C). The mainte-
nance of constant total IFT protein per flagellum
is critical for this model, and it appears to be the
result of length-dependent changes in the size and

Fig. 3. Illustration of the balance-
pointmodel of flagellar length control.
(A) IFT particles (green) associated
with the flagellar basal body bind
precursor molecules from cytoplas-
mic pool (red) and are injected into
the flagellum, where they travel to
the distal tip to deliver precursor
for flagellar assembly. Flagella as-
sembly rate depends on the rate of
anterograde IFT, and the disassem-
bly rate is constant. A length sensor
may act at the flagellar tip or base
or both, and it can affect gene reg-
ulation and precursor synthesis,
injection of IFT, or assembly or dis-
assembly rates to create feedback
loops for length control. (B) Assum-
ing a constant IFT speed, v, the de-
livery frequency of IFT particles, f,
will vary inversely with flagellum
length, L. (C) In the balance-point
model, flagellar length reaches a
steady state where the assembly rate
(blue) and disassembly rate (orange) curves intersect.
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Figure 6: An updated balance point model where the cytoplasm contains a pool of
axoneme components to be transported bymotor proteins to the tip. Figure taken from
Chan and Marshall, Science, 337, 1186–1189, 2012.

We will now write down an updated balance point model for two flagella that share the same
(conserved) cytoplasmic pool of precursor. We use units of concentration that are consistent with
flagellar length. That is, concentrations are units of μm per volume. Let ℓ1 and ℓ2 be the lengths
of the respective microtubules. Let the anterograde IFT train speed be va and the retrograde IFT
train speed by vr. The time it takes an IFT train to reach the tip is ℓi/va, and the amount of time
it takes the disassembled particles to reach the base is ℓi/vr. We will approximate the rate of pickup
of precursor at the base as a linear function of the train density and the cytoplasmic concentration.
(Remember that the density of transporters goes like 1/ℓi.) Then, we can write delayed differential
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equations describing the length of the flagella.

dℓ1

dt = β n(t − ℓ1/va)

ℓ1
− α , (3.6)

dℓ2

dt = β n(t − ℓ2/va)

ℓ2
− α . (3.7)

We can write a differential equation for removal and delivery from the cytoplasm.

dn
dt = −βn

(
1
ℓ1

+
1
ℓ2

)
+ 2α . (3.8)

Here, V is the volume in which the precursor particles reside. (This may be the entire, well mixed
cell, or some pocket in the cytoplasm where the precursors are localized.) Note that here, β has a
different meaning than before. Its units are now μm/s. Note also that even though tubulin that is
disassembled from the tip takes a time ℓi/vr to return to the cytoplasm, there is no explicit time delay
in the n dynamics because this is a constant process.

We also have conservation of total flagellar material.

ntot = n + ℓ1 + ℓ2. (3.9)

These equations allow us to compute the steady state. From the dynamics of ℓ1 and ℓ2, it is clear that
ℓ1 = ℓ2 = βn/α at steady state. Inserting this expression into the conservation law gives the steady
state.

n =
αntot

α + 2β . (3.10)

3.1.6 Nondimensionalization of the updated balance point model

To nondimensionalize, we need to choose units for ℓ1 and ℓ2, which we’ll call ℓ0, units for time, τ ,
and units for the cytoplasmic number of precursors, n0. We define ℓ1 = ℓ0ℓ̃1, ℓ2 = ℓ0ℓ̃2, t = τ t̃, and
n = n0ñ. Then, the dynamical equations are

dℓ̃1

d̃t
=

βn0 τ
ℓ2

0

ñ
(̃

t − ℓ0
τ va

ℓ̃1

)
ℓ̃1

− α τ
ℓ0

, (3.11)

dℓ̃2

d̃t
=

βn0 τ
ℓ2

0

ñ
(̃

t − ℓ0
τ va

ℓ̃2

)
ℓ̃2

− α τ
ℓ0

, (3.12)

dñ
d̃t

= − β τ
ℓ0

ñ(̃t)
(

1
ℓ̃1

+
1
ℓ̃2

)
+

2α τ
n0

. (3.13)

To eliminate parameters, we choose τ = ℓ0/α and ℓ0/n0 = β/α ≡ γ . The dimensionless equa-
tions then become

dℓ̃1

d̃t
=

ñ(̃t − ℓ̃1/u)
ℓ̃1

− 1, (3.14)

dℓ̃2

d̃t
=

ñ(̃t − ℓ̃2/u)
ℓ̃2

− 1, (3.15)
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1
γ

dñ
d̃t

= −ñ(̃t)
(

1
ℓ̃1

+
1
ℓ̃2

)
+ 2, (3.16)

where we have defined u ≡ va/α . We see that the dynamical equations depend only on two param-
eters: the ratio of pick-up rate of precursor to shedding rate from the tip and the ratio of transport to
the tip and shedding rate. To connect to real units, we have to specify one of ℓ0, n0, or τ in terms of α ,
β , ntot, and va, the physical parameters of the system. We could specify n0 = ntot, giving ℓ0 = γntot
and τ = βntot/α 2. We note that we always have to make sure that we set initial conditions such that
ñ+ γ (ℓ̃1 + ℓ̃2) < 1 to obey conservation of mass. Any difference of this sum from unity is indicative
of precursor material that is in transit in the flagellum, so this sum should be close to unity.

3.1.7 Adjusted balance point model and experiments.

We can again fit the adjusted balance point model to growth data from the pH shock experiment. The
result is shown in Fig. 7. We again have good agreement with the growth curve.

Figure 7: Fit of growth from the pH shock experiment using the adjusted balance
point model. The best fit parameters are α = 0.073 μm/min, β = 0.083 μm/min,
ntot = 37.63 μm, and ℓ0

1 = ℓ0
2 = 1.74 μm.

We now will use these parameters to inform a severing experiment. We start with one filament
being the steady state length from the pH shock experiment. We assume that the material that was in
the severed flagellum is gone, so that the only precursor available is that which was in the non-severed
flagellum and in the cytoplasm. We then numerically solve for the dynamics. The result is shown in
Fig. 8. We see the main feature of shrinkage of the intact microtubule while the severed one grows is
captured in this model. However, the time scale is too long. This is possibly due to that fact that the
parameters were obtained from fitting the pH shock experiment, which has different conditions. We
also do not capture the regrowth of the twoflagella together thatwas observed in the experiment. This
implies that the cell is making more precursor, which we may want to include in a refinement. This
also raises the question of how the cell senses and controls the total amount of tubulin it produces.
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Figure 8: Numerical calculation of severing experiment. The red line shows the length
of the severed flagellum and the blue the intact flagellum.

3.2 Conclusions from this exercise

In doing this exercise in mathematizing cartoons, we have produced models that can predict exper-
imental results. In doing so, we have exposed gaps in our understanding. We saw both quantitative
(wrong time scales) and qualitative (no co-growth) failures of our model. This process of proposing
physical models and devising and performing experiments to challenge them, is what learning about
physical processes in cells is all about.
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4 Statistical mechanics and ligand-receptor binding

In the last lecture, we explored how to mathematize cartoons, mostly where the underlying physics
could be describedwithmass action kinetics. Today, wewill learn how tomathematize cartoonswhere
the physical principles involved rest on statistical mechanics. We will have in mind an example,
ligand receptor binding, as we do this.

4.1 Motivation: ligand-receptor binding

A cartoon for ligand-receptor binding is shown in Fig. 9. We are interested in computing the proba-
bility that a given receptor is bound with a ligand. We will call this pbound. We model the receptor as
fixed, sitting in a sea of solvent and ligand. Either one or zero ligands may be bound to the receptor at
any given time.

6.1. THE ANALYTICAL ENGINE OF STATISTICAL MECHANICS 355

ligandreceptorMICROSTATE 1

MICROSTATE 2

MICROSTATE 3

MICROSTATE 4

etc.

Figure 6.1: Simple model of ligand–receptor binding. The solution is treated
using a “lattice model” in which the positions that can be occupied by ligands
are dictated by a discrete set of lattice sites. The microstates of the system
correspond to the di↵erent ways of arranging the L ligands among the di↵erent
lattice sites. The first three microstates correspond to an unoccupied receptor
and microstate 4 has the receptor occupied leaving L� 1 ligands in solution.
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Figure 6.1: Simple model of ligand–receptor binding. The solution is treated
using a “lattice model” in which the positions that can be occupied by ligands
are dictated by a discrete set of lattice sites. The microstates of the system
correspond to the di↵erent ways of arranging the L ligands among the di↵erent
lattice sites. The first three microstates correspond to an unoccupied receptor
and microstate 4 has the receptor occupied leaving L� 1 ligands in solution.

Figure 9: A schematic for ligand-receptor binding. At left, we have a single receptor
(in green) and many ligands. Each square in the grid can either be occupied by a ligand
or a solvent molecule. In this image, the receptor does not have a ligand bound to it.
In the right image, a ligand is bound to the receptor. Figure adapted from Fig. 6.1 of
PBoC2.

We define a “state,” or “microstate,” of this system by the configuration of the L ligands among
the N available spaces on the grid. Some of these states have the receptor bound. In this case, there
are L − 1 receptors free to move about the available spaces out in the solvent.

The probability of the receptor being bound is

pbound =
∑

i∈states with bound receptor

pi, (4.1)

where pi is the probability of being in state i. So, in order to compute pbound, we need to compute pi
for a given state. This is where statistical mechanics comes in.

4.2 Derivation of the Boltzmann distribution

We will develop an expression for pi more generally for any system with an associated set of discrete
states. The states are indexed by i, and each has an energy Ei associated with it. We will take an
approach along the lines of section 6.1.2 of PBoC2, which is a bit unconventional for statistical physics
textbooks. We will maximize informational entropy in our treatment, following E. T. Jaynes, Phys.
Rev., 106, 620–630, 1957. The abstract of that paper very cleanly and clearly captures the notion of
what we are trying to do here.
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Information theory provides a constructive criterion for setting up probability distri-
butions on the basis of partial knowledge, and leads to a type of statistical inference
which is called the maximum-entropy estimate. It is the least biased estimate possi-
ble on the given information; i.e., it is maximally noncommittal with regard to missing
information. If one considers statistical mechanics as a form of statistical inference
rather than as a physical theory, it is found that the usual computational rules, starting
with the determination of the partition function, are an immediate consequence of the
maximum-entropy principle. In the resulting “subjective statistical mechanics,” the
usual rules are thus justified independently of any physical argument, and in particu-
lar independently of experimental verification; whether or not the results agree with
experiment, they still represent the best estimates that could have been made on the
basis of the information available.
It is concluded that statistical mechanics need not be regarded as a physical theory de-
pendent for its validity on the truth of additional assumptions not contained in the laws
of mechanics (such as ergodicity, metric transitivity, equal a priori probabilities, etc.).
Furthermore, it is possible to maintain a sharp distinction between its physical and
statistical aspects. The former consists only of the correct enumeration of the states
of a system and their properties; the latter is a straightforward example of statistical
inference.

Indeed, when we perform analysis using statistical mechanics in this class, we will identify the
states of the system, assign their energies, and then let the machinations of statistical mechanics do
the rest.

4.2.1 The Shannon entropy

The problem of specifying pi is really open-ended. As Jaynes suggested, we can use maximum-
entropy principles to derive an expression for pi. The entropy he is talking about is the Shannon
entropy, named after Claude Shannon, who published its mathematical form in 1948, also known
as the informational entropy. I will state the definition of the entropy associated with a discrete
probability distribution, and then give a short discussion on what it means intuitively.

S = −K
∑

i
pi ln pi, (4.2)

where K is an arbitrary positive constant. It is understood that all pi’s are nonnegative and that
pi ln pi → 0 as pi tends toward zero.

We can think of entropy as ameasure of ignorance, or of unbiasedness. For example, an unbiased
coin will give heads in half of the flips, so the probability of getting heads is ph = 1/2. We can choose
K such that

S = −
∑

i
pi log2 pi = −ph log2 ph − (1 − ph) log2(1 − ph). (4.3)

So, if ph = 1/2, S = 1 bit, where a “bit” is the unit of entropy when we have chosen K as we have.
Now, let’s say ph = (1 + ε )/2, where ε ∈ [−1, 1]. Now, we have

S = −1 + ε
2

log2
1 + ε

2
− 1 − ε

2
log2

1 − ε
2

= −1
2

log2
(1 + ε )(1 − ε )

4
− ε

2
log2

1 + ε
1 − ε
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= 1 − log2(1 − ε 2)− ε
2

log2
1 + ε
1 − ε

= 1 − log2(1 − ε 2)− |ε |
2

log2
1 + |ε |
1 − |ε | . (4.4)

Looking at the three terms, we have a constant plus two monotonically decreasing functions of |ε |.
Further, if |ε | = 1, we get S = 0. So, the maximal entropy is when ε , the bias of the coin, is zero.
The entropy is minimal when |ε | = 1, which means that we know the outcome of the coin toss ahead
of time.

Now, imagine that instead of flipping a fair coin (which has two sizes), we roll a fair 8-sided die.
The entropy associated with the probability distribution for the die is

S = −
∑

i
pi log2 pi = −8

(
1
8

log2
1
8

)
= 3 bits. (4.5)

So, the entropy for a fair 8-sided die is greater than that of a fair coin. This makes sense; we are more
ignorant as to the result we would expect from an 8-sided die than from a two-sided coin.

It turns out that there is only one way to define entropy that satisfies a set of desiderata, or desired
qualities about entropy, our measure of ignorance, or unbiasedness. These desiderata are, loosely,

1. The entropy is continuous in pi.

2. If allpi are equal, the entropy ismonotonic inpi. (Thus, the probability distribution describing
the outcomes of a roll of a fair 8-sided die should have greater entropy than that describing a
fair coin flip.)

3. Arbitrary grouping of events does not change the entropy (the so-called composition law).

Shannon proved that the only function that has these properties is in fact the Shannon entropy, equa-
tion 4.2.

4.2.2 The maximal entropy distribution

To be maximally unbiased, or to use only the information we have about a system to infer pi, we must
choose pi that maximizes the entropy. To do this, we differentiate the entropy with respect to pi and
set the derivative equal to zero.

∂S
∂pj

= −K ∂

∂pj

∑
i

pi ln pi = −K(1 + ln pj) = 0 ⇒ pj = e−1. (4.6)

I put this equation in gray because this is not what we should do! Clearly this cannot be right, since
the probability distribution is not normalized, i.e.,

∑
i pi ̸= 1.

So, we need to do a constrained maximization. Specifically, we need to impose the constraint that∑
i pi = 1, as is always the case. We impose further that pi has a well-defined expectation value for

the energy,

⟨E⟩ =
∑

i
piEi. (4.7)

To impose the constraints in themaximization problem, we use themethod of Lagrangemultipliers,
which is described on pages 254–255 in PBoC2. The idea is that we add zero to S(pi), where the
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“zero” we add is defined by the constraints, with a multiplier and then minimize that function over
pi and the multipliers. We call this function the Lagrangian.

L(pi, α , β ) = S + α
(

1 −
∑

i
pi

)
+ β

(
⟨E⟩ −

∑
i

piEi

)

= −K
∑

i
pi ln pi + α

(
1 −

∑
i

pi

)
+ β

(
⟨E⟩ −

∑
i

piEi

)
, (4.8)

where α and β are the Lagrange multipliers. Necessary conditions for pi, α , andβ to be maximal
are that

∂L
∂pj

= 0 ∀j, (4.9)

∂L
∂α = 0, (4.10)

∂L
∂ β = 0. (4.11)

The last two conditions just mean that the constraints are satisfied, since they reduce to

1 −
∑

i
pi = 0, (4.12)

⟨E⟩ −
∑

i
piEi = 0. (4.13)

Now, if the constraints are affine (meaning that their second derivative with respect to pi vanishes,
which they do) and the entropy is strictly concave (its matrix of second derivatives, called the Hes-
sian, is negative definite), then the necessary conditions are sufficient for optimality. Entry jk of the
Hessian is

∂2S
∂pi∂pj

= −
δ jk

pj
, (4.14)

where δ jk is the Kronecker delta (δ jk = 1 for j = k and 0 otherwise). This means that the Hessian is
diagonal with negative entries, so it is negative definite. Therefore, we need only to solve equations
(4.9) through (4.11) to determine the maximum entropy probability distribution, pi.

Now, we will find where the derivative of the Lagrangian with respect to pj is zero.

∂L
∂pj

= −K(1 + ln pj)− α − βEj = 0. (4.15)

Solving for pj gives

pj = e−α e−β Ej , (4.16)

where we have absorbed constants such that 1+ α/K → α and β/K → β . Now, using the normal-
ization constraint, we have∑

i
pi = e−α

∑
i

e−β Ei = 1, (4.17)
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so

eα =
∑

i
e−β Ei ≡ Z, (4.18)

where we have defined the partition function Z. The second constraint, ⟨E⟩ =
∑

i piEi is automat-
ically satisfied by definition, so we have arrived at our maximum entropy probability distribution. It
is an exponential distribution.

pi =
e−β Ei

Z . (4.19)

4.2.3 Connection to thermodynamics

While we have derived an expression for pi, we still do not know the physical meaning of the Lagrange
multiplier β . We know only that itmust have dimensions of inverse energy, since βEi must be dimen-
sionless. To connect β to physical quantities, we turn to thermodynamics. Thermodynamics deals
with observed quantities in large systems. The internal energy is ⟨E⟩. We can write the combined
first and second law of thermodynamics as

dS =
1
T d⟨E⟩. (4.20)

Then,

∂S
∂⟨E⟩ =

1
T . (4.21)

To compute the derivative of the entropy, we first write it in a more convenient form using our
derived expression for pi.

S = −K
∑

i
pi ln pi = −K

∑
i

pi(−βEi − ln Z)

= Kβ
∑

i
piEi + K ln Z

∑
i

pi = Kβ ⟨E⟩+ K ln Z. (4.22)

Thus, we have

∂S
∂⟨E⟩ = Kβ =

1
T . (4.23)

So, for the Shannon entropy to be equal to the thermodynamic entropy, Kβ = 1/T. Thus, β =
1/KT. When we have equivalence to the thermodynamic entropy, we call the constant K the Boltz-
mann constant, and denote it as kB or k. The Boltzmann constant has a value of

kB = 1.38 × 10−23 J/K = 4.1 pN-nm. (4.24)

We will also use β ≡ 1/kBT in our calculations, since it turns out to be notationally convenient.
Thus, we have

pi =
e−Ei/kBT∑
i e−Ei/kBT . (4.25)
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The quantity e−Ei/kBT represents an unnormalized probability and is referred to as a Boltzmann
weight. Recall that the sum of Boltzmann weights is

Z =
∑

i
e−Ei/kBT, (4.26)

which serves as the normalization constant of the probability, is called a partition function.

4.3 Back to ligand-receptor binding

We can now return to our ligand-receptor binding problem. We know the probability of each state,
pi, and we just need to assign energies to them to compute pbound. Let the energy of a single unbound
ligand be Eu and the energy of a bound ligand be Eb. Then the total energy of any state where the
receptor is unbound is LEu, where, as a reminder, L is the total number of ligands. The total energy
of any state where the receptor is bound is Eb + (L − 1)Eu. Then the total statistical weight of all
unbound states is equal to the number of states with unbound receptor times the Boltzmann weight
of an unbound state, e−β Eu .

We can compute the number of states with unbound ligand. The number of ways select L our of
N lattice sites to be occupied by ligand is given by the binomial coefficient, N!/(N−L)!L!. This is the
multiplicity of the bound state; i.e., the number of states with the same energy.

It helps to organize everything into a states and weights table.

state energy multiplicity statistical weight

receptor unbound LEu
N!

(N−L)!L!
N!

(N−L)!L! e−β LEu

receptor bound Eb + (L − 1)Eu
N!

(N−L+1)!(L−1)!
N!

(N−L+1)!(L−1)! e−β (Eb+(L−1)Eu)

For ease of notation, we will denote the appropriate binomial coefficients as Ω u and Ω b. Then,
we can compute pbound as

pbound =
Ω be−β (Eb+(L−1)Eu)

Ω be−β (Eb+(L−1)Eu) + Ω ue−β LEu
=

Ω b
Ω u

e−β (Eb−Eu)

1 + Ω b
Ω u

e−β (Eb−Eu)
. (4.27)

Now,

Ω b
Ω u

=
N!

(N − L + 1)!(L − 1)!
(N − L)!L!

N!
=

L
N − L + 1

. (4.28)

Because L ≪ N in a dilute solution,

N − L + 1 ≈ N ≈ N + L. (4.29)

Using these approximate expressions allow us to write Ω b/Ω u as themole fraction of ligand, xL.

Ω b
Ω u

≈ L
N ≈ L

N + L = xL. (4.30)

So,

pi =
xLe−β (Eb−Eu)

1 + xLe−β (Eb−Eu)
. (4.31)
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We can convert mole fraction to concentration be multiplying by the density of solvent, water in most
physiological cases;

cL = ρ H2O xL. (4.32)

Now, if we multiply top and bottom of our expression for pi by unity, represented as ρ H2O/ρ H2O, we
get

pi =
cLe−β (Eb−Eu)/ρ H2O

1 + cLe−β (Eb−Eu)/ρ H2O
. (4.33)

Finally, we define the dissociation constant Kd = ρ H2oe−β (Eu−Eb). We arrive at

pbound =
cL/Kd

1 + cL/Kd
. (4.34)

This is a common result (called aLangmuir isotherm) that could be seen fromwhat you remember
from general chemistry. We can take the probability of a receptor being bound as

pbound =
cLR

cLR + cR
. (4.35)

We use the definition of the dissociation constant,

Kd =
cLcR
cLR

, (4.36)

to get

pbound =
cLcR/Kd

cLcR/Kd + cR
=

cL/Kd

1 + cL/Kd
. (4.37)

In deriving this result, we have a clear picture about the physical origin of the dissociation constant.
We also have a framework to study cases where we have more complicated states and weights.

4.4 Maximum entropy distributions for other ensembles

We will now use the method of maximum entropy to derive probability distributions when we know
other facts about the states.

4.4.1 Given energy and number of particles

Now let’s say that we have a system that consists of particles. Each state of the system has a well
defined energy, Ei and number of particles, Ni. We should therefore have an expectation value for Ni.
Now, we have three constraints for pi.∑

i
pi = 1, (4.38)

⟨E⟩ =
∑

i
piEi, (4.39)
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⟨N⟩ =
∑

i
piNi. (4.40)

We construct our Lagrangian as before, but with a third Lagrange multiplier.

L = −kB
∑

i
pi ln pi + α

(
1 −

∑
i

pi

)
+ β

(
⟨E⟩ −

∑
i

piEi

)

+ γ
(
⟨N⟩ −

∑
i

piNi

)
. (4.41)

We take the same approach as before.

∂L
∂pj

= −kB(1 + ln pj)− α − βEj − γNj = 0. (4.42)

Solving gives

pj = e−α e−β Ej− γ Nj , (4.43)

where we have again absorbed constants: −1 − α/kB → α , β/kB → β , and γ/kB → γ . We use
the normalization condition that

∑
i pi = 1 to get

eα =
∑

i
e−β Ej− γ Nj ≡ Z. (4.44)

To find the values of the other Lagrange multipliers that connect the entropy to the thermodynamic
entropy, we do the same procedure. We first write the combined first and second law of thermody-
namics.

dS =
1
T d⟨E⟩ − μ

T d⟨N⟩, (4.45)

where μ is the chemical potential of the particles. Thus,(
∂S
∂⟨N⟩

)
⟨E⟩

= − μ
T . (4.46)

Going back to the expression we wrote for the probability pi and the partition function,

S = −kB
∑

i
pi ln pi = −kB

∑
i

pi (−βEi − γNi − ln Z)

= kB ln Z + kB β ⟨Ei⟩+ kB γ ⟨N⟩. (4.47)

So, (
∂S
∂⟨N⟩

)
⟨E⟩

= kB γ = − μ
T . (4.48)

Thus, we have γ = −μ/kBT. We again get β = 1/kBT in a similar manner. Thus, we have

pi =
e−β (Ei−μ Ni)∑
i e−β (Ei−μ Ni)

. (4.49)
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4.4.2 A general thermodynamic conjugate pair

We see a pattern here. Let’s say that a given state has associated with it an energy Ei, and another ar-
bitrary extensive property Xi with a well-defined expectation value ⟨X⟩. Then, the maximum entropy
distribution is

pi =
e−β Ei−λXi

Z
, (4.50)

where

Z =
∑

i
e−β Ei−λXi , (4.51)

with λ being a Lagrange multiplier. To link λ to a physical quantity, it always ends up being the
thermodynamic conjugate variable to ⟨X⟩ divided by kT. We can havemany such extensive properties.
So, if we index these properties by k, we have, generally,

pi =
1
Z

exp

{
− 1

kBT

(
Ei +

∑
k

ykXk

)}
, (4.52)

where yk denotes the thermodynamic conjugate variable to Xk and

Z =
∑

i
exp

{
− 1

kBT

(
Ei +

∑
k

ykXk

)}
. (4.53)

4.5 Another look at ligand-receptor binding

Let’s take another look at ligand-receptor binding using our new tools. We’ll reframe how we look at
the system. We focus on the receptor, knowing there is a pool of ligands immediately around it. In the
immediate vicinity of the receptor, there can only be zero or one ligand. In the latter case, the ligand is
bound. So, the number of ligands in the system can fluctuate, so we can define each state to have an
energy Ei and a number of ligands, Li. If μ is the chemical potential of a ligand, then we have a new
states and weights table.

state energy multiplicity statistical weight

receptor unbound Eu 1 e−β Eu

receptor bound Eb 1 e−β (Eb−μ )

We can then readily compute pbound.

pbound =
e−β (Eb−μ )

e−β (Eb−μ ) + e−β Eu
=

e−β (Eb−Eu−μ )

1 + e−β (Eb−Eu−μ )
. (4.54)

Now, as derived in section 6.2.2 of PBoC2 (we will not derive it here), for a dilute solution, the chem-
ical potential of solute species k is

μ k = μ 0
k + kBT ln xk. (4.55)
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The chemical potential for the solvent is

μ solv = μ 0
solv − kBT

∑
k

xk. (4.56)

If we insert the chemical potential for solute into our expression for pbound, we get

pbound =
xLe−β (Eb−Eu−μ 0)

1 + xLe−β (Eb−Eu−μ 0)
=

cL/Kd

1 + cL/Kd
=

cL
Kd + cL

, (4.57)

the same expression as before with

Kd = e−β (Eu+μ 0−Eb). (4.58)

Note that there is a difference in the definition of Kd, which is due to the subtle difference in the
definition of the energies of the states. In our previous treatment, we defined Eu to be the energy of
a ligand when unbound. We tacitly assumed that the energy of the receptor when unbound was zero.
Here, Eu is the energy of the receptor when unbound and μ 0 is the energy of a single ligand alone in
solution.
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5 Two-statemodels case study: mechanosensitive ion chan-
nels

In the last lecture, we worked through some basic ideas of statistical mechanics and applied them to
ligand-receptor binding. The simple ligand-receptor binding example belongs to a class of two-state
models. As the name suggests, these aremodels where there are two states to consider. In the ligand-
receptor binding example, there were two states for the receptor, bound and unbound. A great many
systems may be modeled with two-state models, and we can use the tools of statistical mechanics to
derive useful expressions describing their equilibrium behavior.

In this lecture, we will investigate another two-state model, this time ion channels. Ion channels
are transmembrane protein complexes that can open and close to mediate the transport of ions in and
out of a cell. We will use mechanosensitve ion channels, such as Mscl in E. coli as our first case study
in two-state models.

5.1 Experimental analysis of ion channels

Bert Sakmann andErwinNeher developed thepatch clamp techniquewhereby researchers canmea-
sure current through a single ion channel. Such readings can give traces like those shown in Fig. 10.

If we consider a long time trace, we can compute popen, the equilibrium probability that an ion
channel is open, as the total time during the trace where the channel is open divided by the total time
of the trace. The greater popen is, the more ions can flow through it per unit time.

5.2 A simple two-state model for an ion channel

In order to compute popen for an ion channel, we define two states, open and closed. We can assign
energies to these two states, Eopen and Eclosed. We can then write a states and weights table, as in the
previous lecture.

state energy statistical weight

closed Eclosed e−β Eclosed

open Eopen e−β Eopen

We can then compute the probability that the channel is open as

popen =
e−β Eopen

e−β Eopen + e−β Eclosed
=

e−β (Eopen−Eclosed)

1 + e−β (Eopen−Eclosed)
. (5.1)

Naturally, the open and closed energies will depend on the voltage, which will give popen as a function
of voltage. This is an example of a voltage gaged ion channel. But for our present case study, we
will consider mechanosensitive ion channels, where popen (via the energy of the two states of the
channel) depends on the tension in the membrane. So, our goal is to write

Eopen = Eopen(γ ), (5.2)
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Figure 10: Patch clamp recordings of a single sodium ion channel in a reconstituted
lipid bilayer. A. Recordings of current taken at different voltages. For a voltage of high
magnitude, the channel has a constant current, indicating it is almost always open. For
voltage of low magnitude, it is closed. B. Detail of the trace at -95 mV. The bottom
trace shows a digitized version, displaying when the channel is open or closed. Figure
taken from Keller, et al., J. Gen. Physiol., 88, 1–13, 1986..

where γ is the membrane tension, and then compute popen using the Boltzmann weights.

Before we proceed to this calculation, we first provide some context as to why a cell would need
mechanosensitive ion channels to deal with sudden changes in pressure due to osmotic shock.

5.3 Osmotic pressure

Osmotic pressure, is a pressure exerted across a membrane due to differences in concentration of
solute on either side of the membrane. In the case of Mscl, the solute is positive ions. We can under-
stand osmotic pressure by looking at the thermodynamics of dilute solutions. The chemical potential
of water on either side of a cell membrane, must be equal at equilibrium. That is, the chemical poten-
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tial of water in the cell must equal that in the environment.

μ cell
H2O = μ env

H2O. (5.3)

In the previous lecture in equation (4.56), I stated without proof (see section 6.2.2 of PBoC2) that the
chemical potential of water in a dilute solution is

μ H2O(p,T) = μ 0
H2O(p,T)− kBTx, (5.4)

where x is the mole fraction of solute molecules. Note that the chemical potential is in general a
function of pressure and temperature. So, at equilibrium, we have

μ 0
H2O(pcell,T)− kBTxcell = μ 0

H2O(penv,T)− kBTxenv. (5.5)

This implies that

μ 0
H2O(pcell,T)− μ 0

H2O(penv,T) = kBT(xcell − xenv). (5.6)

Note that we have assumed thermal equilibrium. Then, if the concentration of solute molecules in
the cell is different than in the environment, xcell ̸= xenv, then the inside and outside of the cell must
have different pressure. This difference in pressure, Π ≡ pcell − penv, is called the osmotic pressure.
To proceed, we can expand the left hand side of the above equation about Π = pcell − penv = 0 to
first order to get

μ 0
H2O(pcell,T)− μ 0

H2O(penv,T) ≈
(
∂μ 0

H2O

∂p

)
Π . (5.7)

Thedifferential in this equation is the volumeof awatermolecule, aswe know from thermodynamics.3

∂μ 0
H2O

∂p = vH2O = V/NH2O. (5.8)

Thus, we have

V
NH2O

Π = kBT(xcell − xenv). (5.9)

Recall that xcell ≈ Ncell
solute/NH2O. Using this fact, we have

Π = kBT(ccell − cenv), (5.10)

were c represents a concentration, Nsolute/V.

The typical concentration of positive ions in E. coli is approximately 200 mM (BNID 104049),
or about 0.1 molecules per cubic nanometer. Thus, the osmotic pressure in an E. coli cell, assuming
that cenv ≈ 0 (which would be the case if you put a cell in deionized water) is

Π ≈ 4 pN-nm× 0.1 nm−3 = 0.4 pN/nm2. (5.11)

Given the conversion that 1 pN/nm2 ≈ 10 atm, the osmotic pressure in E. coli in deionized water
is approximately 4 atm. The cell can handle the pressure with its cell wall, but you can imagine that
if you rapidly changed the ionic conditions outside the cell, it suddenly has to withstand a very large
pressure, which can lead to the cell bursting. Mechanosensitive ion channels respond to increased
membrane tension as a result of osmotic shock to let ions in or out to relieve osmotic pressure.

3To see this, consider the total Legendre transform of the free energy, 0 = −S dT+V dp−N dμ ,
and compute (∂μ/∂p)T.
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5.4 Tension and the ion channel

When the ion channel is closed, themembrane ismore stretched thanwhen it is open. This is because
a closed channel pulls themembranemore taught, and anopenmembrane can relieve the tension. The
opening of the channel leads to a change in total area of the surface of the cell, ΔA. We should take
into account the areal stretch of the membrane when considering the energetics of channel opening.
So, we have Estretch = Estretch(ΔA), and define ΔA = 0 for the closed state. We write Estretch as a
Taylor series in ΔA about ΔA = 0. To first order,

Estretch
open = Estretch

closed − γ ΔA. (5.12)

It is clear from the Taylor expansion that γ is a tension (with dimension force per length). We have
chosen a negative sign to ensure that γ is positive under our definition that ΔA is positive. The
stretching energy of the open state is less than the closed state. Thus, we have

Eclosed = E0
closed + Estretch

closed , (5.13)

Eopen = E0
open + Estretch

closed − γ ΔA. (5.14)

We have divided the energy of a state into the energetics associated with the state of the channel itself,
marked by a naught superscript, and the energy associatedwith stretching themembrane. If we define
E0

closed+Estretch
closed as our reference energy, and ε ≡ E0

open−E0
closed, our updated states and weights table

is as follows.

state energy statistical weight

closed 0 1

open ε − γ ΔA e−β (ε− γ Δ A)

We can now write our updated expression for the probability of the ion channel being open as a
function of the membrane tension γ .

popen =
e−β (ε− γ Δ A)

1 + e−β (ε− γ Δ A) . (5.15)

5.5 Determining the parameters

As we have seen again and again in the course, physical modeling of cellular systems exposes measur-
able parameters and testable hypotheses. So, can we do a patch clamp experiment to determine the
parameters? Perozo and coworkers (Perozo, et al., Nat. Struct. Biol., 9, 696–703, 2002) did just that.
They adjusted the applied pressure across a reconstituted membrane and could measure the current
through a single Mscl channel. They then computed popen as I described above for the voltage gated
ion channel. I digitized the data from their measurements and show them in Fig. 11.

As we will derive when we do membrane mechanics later in the course, the tension γ in the
membrane is directly proportional to the applied pressure. Defining the constant of proportionality
to be α , we can write the theoretical curve describing the experimental data as

popen =
e−β (ε−α p Δ A)

1 + e−β (ε−α p Δ A) , (5.16)
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Figure 11: Digitized data from a patch clamp experiment from Perozo, et al., Nat.
Struct. Biol., 9, 696–703, 2002.

where p is the applied pressure. This expression has five parameters, β , α , ΔA, E0
open, and E0

closed,
where the last two are present in ε . As we can already see, the equation we have derived for popen
can only delineate the difference in the open and closed energies of the ion channel, parametrized by
ε . The experiments were done at room temperature (about 295 K), so we know β ≈ 1/(4 pN-nm).
We might know what ΔA is from structural studies, but let’s assume we do not know it. By defining
a = α ΔA, and re-writing popen,

popen =
e−β ε eβ ap

1 + e−β ε eβ ap , (5.17)

we see that we can only determine two constants from measurements of popen (given that we know
β ), ε , the difference in energy of the open and closed states of the channel in the absence of tension,
and a, which describes how tension on the membrane serves to open channels.

We can perform a nonlinear regression to obtain estimates for the parameters β ε and βa.4 The
code to do the regression appears below (with some LATEX-based problems with displaying unicode
at the very end of the script). To do the regression, we use least squares, as implement in SciPy.
Performing the regression, we get that the most probable parameter values are β ε = 9.2 and βa =
0.3 (mmHg)−1. The result is shown in Fig. 12.

Interestingly, wewere able to obtain that absence tension on themembrane, the energy difference
between the open and closed state is about 9 kBT. This gives an open probability in the absence of
tension of about 10−4, which would be difficult to observe experimentally by just measuring current
through an un-tensed channel. This also means that in the absence of tension, the channel is almost
always closed. It takes tension to open it, hence the name mechanosensitive.

This exercise has shown the power of two-state models in helping to set up experiments to probe
the physical nature of ion channels.

4I make the usual statements about the perils of directly doing a maximum likelihood estimate for
the parameters.
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Figure 12: Curve fit of the Perozo, et al., patch clamp data.

1 import numpy as np
2 import scipy.optimize
3 import bokeh.plotting
4

5 # The data sets
6 pressure = np.array([5, 10, 15, 20, 25, 30, 35, 40])
7 p_open = np.array([0.008, 0.008, 0.008, 0.048,
8 0.126 ,0.403 ,0.734 ,0.939])
9

10 # Define theoretical p_open
11 def p_open_theor(pressure, beta_epsilon, beta_a):
12 """Theoretical p_open"""
13 return 1 / (1 + np.exp(beta_epsilon - beta_a * pressure))
14

15 # Define residuals
16 def resid(params, pressure, p_open):
17 # Unpack parameters
18 beta_epsilon, beta_a = params
19

20 # Compute residuals
21 return p_open - p_open_theor(pressure, beta_epsilon, beta_a)
22

23 # Bound on parameters, first lower bounds, then upper
24 bounds = ((-np.inf, 0), (np.inf, np.inf))
25

26 # Initial guess
27 p0 = np.array([0.1, 0.1])
28

29 # Perform least squares
30 res = scipy.optimize.least_squares(resid,
31 p0,
32 args=(pressure, p_open),
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33 bounds=bounds)
34

35 # Put out the optimal parameters
36 beta_epsilon, beta_a = res.x
37

38 # Generate smooth curve
39 pressure_smooth = np.linspace(0, 70, 200)
40 p_open_fit = p_open_theor(pressure_smooth, beta_epsilon, beta_a)
41

42 # Make the plot
43 p = bokeh.plotting.figure(plot_width=500,
44 plot_height=300,
45 x_axis_label='pressure (mm Hg)',
46 y_axis_label='open probability')
47 p.line(pressure_smooth, p_open_fit, line_width=2, color='orange')
48 p.circle(pressure, p_open)
49 bokeh.io.show(p)
50

51 # Report results
52 print("""Most probable fit parameters:βε
53 : {0:.2f}β
54 a: {1:.2f} (mm Hg)�¹""".format(beta_epsilon, beta_a))

perozo_regression.py
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6 Allostery and the Monod-Wyman-Changeux model

In a previous lecture, we used the theory of equilibrium statistical mechanics to study ligand receptor
binding. We then applied a similar theoretical approach to treat a mechano-sensitive ion channel
behavior. In this lecture, we extend that ligand-receptor binding theory to includemore states beyond
“bound” and “unbound.” As we work through the theory, we will discover some of the basic ideas
behind allostery and introduce the famous Monod-Wyman-Changeux (MWC) model.

6.1 Allostery

Consider an enzyme that has two binding sites. One site is involved in its activity, say with binding
its target substrate. We will call this the active site. The other binding site binds some other ligand.
Important, when this other site is bound, the activity of the active site is either positively or negatively
affected. This phenomenon, where binding of one site of a protein or protein complex affects the
activity of another is called allostery.

We can explore allostery using the same states-and-weights approach as with the vanilla ligand-
receptor binding we have already studied. In that case, we had two states, bound and unbound. Now,
we also specifywhether or not the receptor is active of inactive. So, there are now four states, unbound
and inactive, unbound and active, bound and inactive, and bound and active. Each of these four states
has an energy associated with it.

It is more convenient to treat our system to be only the receptor and possibly the single ligand
bound to it. In this case, the energy of the bound state is supplemented with the chemical potential
associated with taking the ligand out of solution, as we showed in lecture 4. That is, we subtract
μ = μ 0 + kBT ln x, where x is the mole fraction of ligand, from the energy to get the statistical
weight. This is shown in the states and weights table below.

state description energy statistical weight

unbound, inactive Eui e−β Eui

unbound, active Eua e−β Eua

bound, inactive Ebi xe−β (Ebi−μ 0)

bound, active Eba xe−β (Eba−μ 0)

We are most interested in the probability that the receptor is active, which we can compute from
the states and weights table.

pactive =
sum of weights of active states

sum of all weights

=
e−β Eua + xe−β (Eba−μ 0)

e−β Eui + e−β Eua + xe−β (Ebi−μ 0) + xe−β (Eba−μ 0)
. (6.1)
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This can be simplified be defining dissociation constants for ligand-receptor binding when the recep-
tor is respectively in the inactive and active states,

Kdi = ρ H2O e−β (Eui+μ 0−Ebi), (6.2)

Kda = ρ H2O e−β (Eua+μ 0−Eba), (6.3)

where ρ H2O is the number density of solvent. We can also use it to define the concentration of ligand
as c = ρ H2Ox. Then, the expression for the probability that the receptor is active is

pactive =
1 + c/Kda

1 + c/Kda + e−β ΔEu

(
1 + Kda

Kdi
(c/Kda)

)
=

1 + c/Kda

1 + c/Kda + e−βΔEu + e−βΔEb(c/Kda)
, (6.4)

where ΔEu = Eui − Eua is the difference in energies of the inactive and active states in the absence
of ligand and ΔEb = Ebi − Eba is the difference in energies of the inactive and active states when the
receptor is bound to ligand.

To understand this expression, we can consider the small and large c limits. In the small ligand
concentration limit, we have

small c : pactive =
1

1 + e−βΔEu
, (6.5)

which is what we expect from a two-state model for receptor activity that does not include binding.
We will consider this to be the base case of activity, that is the probability that the receptor is active
in absence of ligand. In the limit of large ligand concentration, we have

large c : pactive =
1

1 + Kda
Kdi

e−βΔEu
=

1
1 + e−βΔEb

. (6.6)

So, if the ratio of the dissociation constants, Kda/Kdi, is less than one, i.e., if the ligand binds more
tightly to the active state than to the inactive state, the activity of the receptor is enhanced by the
ligand. This is allostery; binding of a ligand at one site of an enzyme enhances activity at another.

To better visualize the how pactive varies with ligand concentration, see Fig. 13 for a plot.

It is also useful to quantify how effective allosteric activation can be compared to the base case of
no ligands. The maximum fold change in activity compared to the base case if found by dividing the
large c limit of pactive by the base case pactive.

max fold change =
large c limit of pactive

small c limit of pactive
=

1 + e−βΔEu

1 + Kda
Kdi

e−βΔEu
=

1 + e−βΔEu

1 + e−βΔEb
. (6.7)

So, the maximum achievable fold change is set by 1 + e−βΔEu . The larger the energy difference
between the active and inactive unbound states, the more effective the ligand-mediated allosteric ac-
tivation.

TheMonod-Wyman-Changeuxmodel. The example we just worked out is an example of
a Monod-Wyman-Changeux (MWC) model. The main idea behind the MWCmodel is the presence
of two states, whether or not ligand is bound, and that ligand can bind in either configuration. As we
have seen, ligand binding shifts the equilibrium between the two states. It is a simple and beautiful
idea, and we will come to see that it is very powerful and ubiquitous throughout cell biology.
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This can be simplified be defining dissociation constants for ligand-receptor binding when the recep-
tor is respectively in the inactive and active states,

,EJ = ȏ )�0 F−Ȁ (&VJ+Ȋ �−&CJ), (3.2)

,EB = ȏ )�0 F−Ȁ (&VB+Ȋ �−&CB), (3.3)

where ȏ )�0 is the number density of solvent. We can also use it to define the concentration of ligand
as D = ȏ )�0Y. Then, the expression for the probability that the receptor is active is

QBDUJWF =
� + D/,EB

� + D/,EB + F−Ȁ ɔ&V
(

� + ,EB
,EJ

(D/,EB)
)

=
� + D/,EB

� + D/,EB + F−Ȁɔ&V + F−Ȁɔ&C(D/,EB)
, (3.4)

where ɔ&V = &VJ − &VB is the difference in energies of the inactive and active states in the absence
of ligand and ɔ&C = &CJ − &CB is the difference in energies of the inactive and active states when the
receptor is bound to ligand.

To understand this expression, we can consider the small and large D limits. In the small ligand
concentration limit, we have

small D : QBDUJWF =
�

� + F−Ȁɔ&V
, (3.5)

which is what we expect from a two-state model for receptor activity that does not include binding.
We will consider this to be the base case of activity, that is the probability that the receptor is active
in absence of ligand. In the limit of large ligand concentration, we have

large D : QBDUJWF =
�

� + ,EB
,EJ

F−Ȁɔ&V
=

�
� + F−Ȁɔ&C

. (3.6)

So, if the ratio of the dissociation constants, ,EB/,EJ, is less than one, i.e., if the ligand binds more
tightly to the active state than to the inactive state, the activity of the receptor is enhanced by the
ligand. This is allostery; binding of a ligand at one site of an enzyme enhances activity at another.

It is also useful to quantify how effective allosteric activation can be compared to the base case of
no ligands. The maximum fold change in activity compared to the base case if found by dividing the
large D limit of QBDUJWF by the base case QBDUJWF.

max fold change =
large D limit of QBDUJWF
small D limit of QBDUJWF

=
� + F−Ȁɔ&V

� + ,EB
,EJ

F−Ȁɔ&V
=

� + F−Ȁɔ&V

� + F−Ȁɔ&C
. (3.7)

So, the maximum fold change is set by � + F−Ȁ ɔ&. The larger the energy difference between the
active and inactive unbound states, the more effective the ligand-mediated allosteric activation.

Plots of QBDUJWF as a function of ligand concentration, and also the maximum fold change as a func-
tion of
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Figure 13: A sketch of the probability that the receptor is active as a function of ligand
concentration.

6.2 Ligand-gated ion channels

In the last lecture, we considered the statistical mechanics of a mechano-sensitive ion channel. We
will not turn to ion channels that are ligand-gated, and treat them using the MWC framework. That
is, the ion channel has two states, open and closed, and the energetics of ligand binding in those two
states varies.

In our model, we will assume that there are two binding sites for ligands on the channel. We
may therefore have four binding states, no sites bound, site one bound, site two bound, and both
sites bound. With the two states of the ion channel, open and closed, that leaves eight total states to
enumerate. We will assume that both binding sites have the same energy, such that the single bound
open states have the same energy, as do the singly bound closed states. We again use the convenient
method of including the chemical potential of the ligand in the statistical weights so we do not need
to explicitly count spatial configurational states of the ligand. With these considerations in mind, we
can write the states-and-weights table.
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state energy statistical weight

2Euc e−2 β Euc

Euc + Ebc x e−β (Euc+Ebc−μ 0)

Euc + Ebc x e−β (Euc+Ebc−μ 0)

2Ebc x2 e−2 β (Ebc−μ 0)

2Euo e−2 β Euo

Euo + Ebo x e−β (Euo+Ebo−μ 0)

Euo + Ebo x e−β (Euo+Ebo−μ 0)

2Ebo x2 e−2 β (Ebo−μ 0)

For the case of this ion channel, the “active state” is the open state. So, we wish to compute
popen. We directly read off the states and weights table to compute it.

popen =
sum of weights of open states

sum of all weights

=
e−2 β Euo + 2x e−β (Euo+Ebo−μ 0) + x2 e−2 β (Ebo−μ 0)

e−2 β Euc + 2x e−β (Euc+Ebc−μ 0) + x2 e−2 β (Ebc−μ 0) + e−2 β Euo + 2x e−β (Euo+Ebo−μ 0) + x2 e−2 β (Ebo−μ 0)

=
1 + 2x e−β (Ebo−Euo−μ 0) + x2 e−2 β (Ebo−Euo−μ 0)

1 + 2x e−β (Ebo−Euo−μ 0) + x2 e−2 β (Ebo−Euo−μ 0) + e−βΔEu
(
1 + 2x e−β (Ebc−Euc−μ 0) + x2 e−2 β (Ebc−Euc−μ 0)

)
=

(1 + c/Kdo)
2

(1 + c/Kdo)
2
+ e−2 βΔEu

(
1 + Kdo

Kdc
(c/Kdo)

)2

=
(1 + c/Kdo)

2

(1 + c/Kdo)
2
+ (e−βΔEu + e−βΔEb(c/Kdo))

2 (6.8)

where

ΔEu = Euc − Euo, (6.9)

ΔEb = Ebc − Ebo, (6.10)

Kdo = ρ H2O e−β (Euo+μ 0−Ebo), (6.11)

Kdc = ρ H2c e−β (Euc+μ 0−Ebc). (6.12)
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The functional form is similar to what we got in the allosteric ligand-receptor binding case, but with
squared terms. The high and low ligand concentration limits are similar, except again with squared
terms.

small c : pactive =
1

1 + e−2 βΔEu
, (6.13)

large c : pactive =
1

1 +
(

Kdo
Kdc

e−βΔEu

)2 =
1

1 + e−2 βΔEb
. (6.14)

We can thus determine the dynamic range, r, of the channel.

r = pmax
open − pmin

open =
1

1 +
(

Kdo
Kdc

e−βΔEu

)2 − 1
1 + e−2 βΔEu

. (6.15)

If we have N ion channels in a cell, the dynamic range of the entire cell is rcell = Nr. The dynamic
range is large for large ΔEu (the energy of the closed state is much higher than that of the open state
in the absence of ligand) and for small Kdo/Kdc (the ligands bind with much greater affinity to the
open state).

6.2.1 The logistic equation and the Bohr parameter

The functional forms of the expressions for pactive in the allosteric receptor example and for popen
in the ligand-gated ion channel example are similar. In fact, we can re-write the functional form in
terms of the logistic equation we have seen for two-state models. After all, these models are two-state
models (active/inactive or open/closed); the added wrinkle is that ligand concentrations affect the
probabilities of the respective states. For the ion channels, we can write

popen =
1

1 + e−β F(c) , (6.16)

a logistic equation,5 where F(c) is the Bohr parameter.6 The Bohr parameter for the ligand-gated
ion channel we have been considering is

F(c) = 2ΔEu + 2kBT ln
(

1 + c/Kdo

1 + c/Kdc

)
. (6.17)

Note that the Bohr parameter resembles the form of a chemical potential. The ligand-less two state
model energy is adjusted by a correction related to the concentration of ligand and the respective
binding energies.

6.2.2 Data collapse

Considering that all two-state models, including those modeled using MWC considerations, have an
active (or open) probability given by the logistic equation, all pactive curves should fall on the same line

5Also called a Fermi-Dirac equation.
6The Bohr parameter is named after Christian Bohr, the father of Niels Bohr. He described what

is now called the Bohr effect, in which presence of CO2 decreases hemoglobin’s oxygen binding effi-
ciency. The Bohr parameter arises in that case as well.
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when plotted against the Bohr parameter. So, if we could determine ΔEu, Kdo, andKdc by performing
experiments and statistical inference, we can compute the Bohr parameter F(c) for each value of c.
If we then plot the measured pactive versus F(c), all points should fall along the logistic curve given by
(6.17).

To investigate this, we will use data acquired in Henry Lester’s lab on the nicotinic acetylcholine
receptor/ion channel. This ion channel is perhaps the best studied ion channel in nature, certainly of
importance in the human nervous system. Its structure is shown in Fig. 14. The experimenters per-
formed voltage clamp experiments to get open probabilities of the ion channels as a function of ligand
(in this case acetylcholine, abbreviated ACh). They performed mutations of the different domains
of the receptor and repeated the experiments, showing different responses to ligand. Their original
figure is shown in Fig. 14.
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FIG. 1 a, Voltage-clamp currents from oocytes expressing mouse 
muscle acetylcholine receptors (AChR). Left, wild type; right, a subunit 
combination with 3 Leu 9'Ser mutations. ACh concentrations for each 
application are shown above the traces. b, Normalized average dose-
response relations for exemplary combinations containing O (wild type) 
to 4 (mt=4) Leu 9'Ser mutations: a2PYli (wild type), apy*o, a2P*y*o, 
a!p*yo and a1py*i5*. The horizontal line at 0.5 represents the EC5a for 
each combination. The receptors with mt= 4 expressed rather low 
maximal current levels (20-100 nA). Each dose-response relation rep-
resents at least 5 oocytes from at least 2 batches. c, Relationship 
between number of mutated subunits and ECso (logarithmic axis) for 
all the combinations measured (Table 1). Each symbol represents a 
distinct combination. S.e.ms are shown where they exceed the size of 
the symbols. 
METHODS. Leucine-to-serine mutations were generated by site-directed 
mutagenesis using the Clontech Transformer site-directed mutagenesis 
kit (Palo Alto, CA) and confirmed by sequencing. mRNA was synthesized 

Fig. 2). We analysed the responses assuming that ( 1) currents 
summed from independent populations of ai'Py8, a2PY8 and 
a*apy8 receptors, (2) receptors assembled equally well with a 
and with a*, and (3) the two possible subunit arrangements for 
a*apy8 receptors had identical responses. The calculated EC50 

values for a*apy8 ranged from I to 2 µM, within the range 
observed for the other receptors with m; = 1. These results, and 
the observation that the ai' py8 receptor has an EC50 in the range 
of other receptors with m; = 2, show that the aLeu 9' residues 
do not occupy a privileged position in the gating process, despite 
the fact that agonist binds at least partly to the a-subunit. 

TABLE 1 Dose-response relations for mouse muscle ACh receptors 
containing various numbers of mutated Leu 9'Ser subunits (mt) 

m: mRNA injections EC50 (nM) Hill coefficient 

0 a2PYi5 24,010 1.68 
1 a*apyo 1,290 2.15±0.22 

a2P*yo 531 2.03 
a2py*o 1,910 1.82±0.14 
a2Pyo* 486 1.98 

2 a1pyo 202 1.81 
a2P*y*i5 49.7 1.64 
a2P*yi5* 208±69 1.34 
a2Py*o* 42.7 1.89 

3 a!p*yo 10.3 1.44 
a!py*i5 15.1 1.61 
a!py8* 8.4±1.3 1.45 

a2P*y*8* 9.8±1.3 1.30 
4 a!P*yo* 2.3 0.96 

a!Py*li* 2.0±0.6 1.02±0.26 
5 a1p*y*i5* <1 

S.e.ms for EC50 were less than 10% of the mean, except where given; 
s.e.ms for Hill coefficient were less than 0.07, except where given. 
Responses for the a!P*y*o* combination were too small for reliable 
measurements of EC50 or Hill coefficient. 
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in vitro using the Megascript kit (Ambion, Austin, TX). pBluescript plas-
mids containing the AChR subunits were linearized and run-off 
transcripts prepared with T7 RNA polymerase Stage V-VI Xenopus 
oocytes were isolated and injected with 10-50 ng of mRNA in a stoichi-
ometric ratio for a: p: y: i5 of 2: 1: 1: 1 (ref. 12). Before recording, oocytes 
were incubated at 18 'C in a modified Barth's solution supplemented 
with 50 µg ml-1 Gentamicin, 2.5 mM pyruvate and 0.6 mM theophylline. 
Electrophysiological recordings were carried out 2-4 days after injec-
tion. Membrane potential was held at -80 mV with a 2-electrode volt-
age-clamp circuit. Bath solutions contained 96 mM NaCl, 2 mM KCI, 
1 mM MgCl2 and 5 mM HEPES, pH 7.5. Ca2+ was omitted from the 
bath solution and atropine (1 µM) was included to prevent activation 
of endogenous Ca2+ -activated Cl channels via muscarinic receptors. 
Individual dose-response relations were fitted to the Hill equation, 
I/Ima,= 1/(1 + { EC50/[Al}""), where [A) is the ACh concentration, EC50 

is the ACh concentration giving half-maximal response, Ima, is the maxi-
mal response, and nH is the Hill coefficient. 

In single-channel studies with the ai' py8 receptor (Fig. 3), 
ACh evoked bursts of openings lasting hundreds of milliseconds, 
similar to records with the aLeu 9'Cys AChR (ref. 7) and much 
longer than bursts in the wild type at the same ACh concentra-
tion (ACh). Within a burst, however, there were many brief 
(time constant ~0.15 ms) closings, so that the longest compo-
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FIG. 2 Dose-response relation for a*apyo, determined by injecting 
oocytes with a mixture of mRNA for a*, a, p, 8 and 8 subunits. The 
injected mRNA mole fraction a* /(a*+ a) was 0.5. The dose-response 
relations were measured independently for a;pyo and for a2PY8 in other 
oocytes from the same batch. The normalized currents for the mixture 
were expressed as the sum of dose-response relations for these 2 
combinations plus a third relation for aa*py8. With the assumptions 
given in the text, if the mole fraction of expressed a* subunit is a*, the 
proportion of receptors of each species is (a*)2, (1- a*)2, and 
2a* (1- a*), respectively. The results fit best for a*= 0.25. The calcula-
ted dose-response relation for a*apyi5 is characterized by EC50 = 
1.29 µM and nH = 2.15. 

515 

Figure 14: Left, a schematic of the nicotinic acetylcholine receptor and ion channel.
Adapted fromFig. 7.26 of PBoC2. Right, voltage clamp experimental data for receptors
containing various mutations. Figure taken from Labarca, et al., Nature, 376, 514–516.

I digitized these data and performed a maximum likelihood estimate to get the necessary param-
eters. I then computed the Bohr parameter for each data point and plotted all data together on one
plot. The result is shown in Fig. 15. The code to perform this analysis is at the end of this lecture.

6.2.3 Information and channel capacity

Ligand-gated ion channels sense the surroundings. If a channel is open, it is indicative that there are
likely more ligands around than when it is closed. So, we may ask, how much information about the
ligand concentration does the open or closed states of channels give the cell? Specifically, say we
have Ncell ion channels in a cell and that n of them are open. What can we learn about the ligand
concentration c given that we know n and N?

We have already dabbled in information theory when we derived the Boltzmann distribution.
We will now apply these ideas to quantify how much information the channel state gives about the
ligand concentration. That is, we seek the mutual information between the open-or-closed state of
the channels and the ligand concentration.

Themutual information between two randomvariablesX andY is the entropy loss that is incurred
by knowing Y.

I(X;Y) = S[X]− S[X | Y], (6.18)
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Figure 15: Top, results of maximum likelihood estimate curve fits of the data from
Labarca, et al., Nature, 376, 514–516. Bottom, all data sets plotted against the Bohr
parameter. The logistic curve is shown in black.

where we have introduced the notion of conditional entropy,

S[X | Y] =
∑

y
P(y)

(
−
∑

x
P(x | y) log2 P(x | y)

)
. (6.19)

The conditional entropy is then the entropy associated with the distribution P(X | Y), averaged over
Y. The mutual information is then

I(X;Y) = −
∑

x
P(x) log2 P(x) +

∑
y

P(y)
(∑

x
P(x | y) log2 P(x | y)

)
. (6.20)

It can be shown that the mutual information is symmetric, such that I(X;Y) = I(Y;X).

In the present case, we take X = c and Y = n. I will not work out the mathematical details here
(see the Marzen and Phillips paper), but will state without proof that the maximum mutual informa-
tion possible, called the channel capacity, is approximately (in the low noise limit)

Iopt ≈ log2

(
1√
2πe

∫
dn σ n

)
, (6.21)
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where σ n is the standard deviation of P(n | c,N). We know that P(n | c,N) describes a Binomial
distribution, where the probability that a given channel is open is given the expression we derived in
(6.8). The standard deviation is then that for a Binomial distribution,

σ 2
n = Npopen(1 − popen). (6.22)

Using this expression and evaluating the integral gives

Iopt ≈ log2

(√
2N
πe

(
sin−1√pmax

open − sin−1
√

pmin
open

))
, (6.23)

which is related to the dynamic range, since the inverse sine function sin−1(x) is monotonic on the
interval 0 ≤ x ≤ 1.

So, the bigger the dynamic range, the larger the channel capacity, and the more then cell and
“know” about its surroundings. As we have seen, having multiple ligands bind to the channel to con-
trol the gating where binding it tighter when the channel is open, boosts the dynamic range, therefore
increasing the channel capacity.

1 import numpy as np
2 import pandas as pd
3 import scipy.optimize
4 import bokeh.plotting
5 import bokeh.io
6

7 # Load in data set
8 df = pd.read_csv('lester_acetylcholine.csv')
9

10 # Get units in molar
11 df['[ACh] (M)'] *= 1e6
12

13 df = df.rename(columns={'[ACh] (M)': '[ACh] (µM)'})
14

15 # Set up data frame with MLE results
16 cols = ['Kd_open', 'Kd_closed', 'beta_deltaE', 'genotype']
17 df_best_fit = pd.DataFrame(columns=cols)
18

19

20 def p_open_theor(c, log_Kd_open, log_Kd_closed, beta_deltaE):
21 """Theoretical curve for open probability"""
22 Kd_open = np.exp(log_Kd_open)
23 Kd_closed = np.exp(log_Kd_closed)
24 a = (1 + c/Kd_open)**2
25 b = (1 + c/Kd_closed)**2
26

27 return a / (a + b * np.exp(-beta_deltaE))
28

29

30 def resid(params, c, p_open):
31 """Residual from theoretical for use in least squares."""
32 return p_open - p_open_theor(c, *params)
33

34
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35 # Set up plots
36 p = bokeh.plotting.figure(plot_height=300,
37 plot_width=600,
38 x_axis_label='[ACh] (µM)',
39 y_axis_label='open probability',
40 x_axis_type='log')
41 p2 = bokeh.plotting.figure(plot_height=300,
42 plot_width=600,
43 x_axis_label='Bohr parameter (units of kT)

',
44 y_axis_label='open probability')
45

46 # Theoretical logistic curve
47 F = np.linspace(-6, 6, 200)
48 p2.line(F, 1 / (1 + np.exp(-F)), color='black', line_width=2)
49

50

51 colors = bokeh.palettes.d3['Category10'][10]
52 Ach_smooth = np.logspace(-4, 3, 200)
53

54 # Initial guess for curve fits
55 p0 = np.array([-1, 0, -6])
56

57 for i, gtype in enumerate(df['genotype'].unique()):
58 # Load in data for one genotype
59 sub_df = df.loc[df['genotype']==gtype, :]
60 c, p_open = sub_df['[ACh] (µM)'].values, sub_df['p_open'].values
61

62 # Perform curve fit
63 res = scipy.optimize.least_squares(resid, p0, args=(c, p_open))
64

65 # Store results
66 Kd_open, Kd_closed = np.exp(res.x[:2])
67 beta_deltaE = res.x[2]
68 df_res = pd.DataFrame(columns=cols,
69 data=[[Kd_open, Kd_closed, beta_deltaE,

gtype]])
70 df_best_fit = df_best_fit.append(df_res, ignore_index=True)
71

72 # Plot fits
73 p.line(Ach_smooth,
74 p_open_theor(Ach_smooth, *res.x),
75 line_width=2,
76 color=colors[i])
77 p.circle(c, p_open, color=colors[i], legend=gtype)
78

79 # Plot using Bohr parameter (data collapse)
80 a = (1 + c/Kd_open)**2
81 b = (1 + c/Kd_closed)**2
82 F = beta_deltaE + np.log(a) - np.log(b)
83 p2.circle(F, p_open, color=colors[i], legend=gtype)
84
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85 p.legend.location = 'bottom_right'
86 p2.legend.location = 'bottom_right'
87

88 # Save as SVG
89 p.output_backend = 'svg'
90 p2.output_backend = 'svg'
91 bokeh.io.export_svgs(p, filename='lester_mle.svg')
92 bokeh.io.export_svgs(p2, filename='lester_data_collapse.svg')

lester_curves.py
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7 Statistical mechanics of gene expression regulation

Wehave been using the tools of statisticalmechanics, and two-state andMWCmodels in particular, to
study a host of problems, including ligand-receptor binding, allostery, operation of ion channels, and
even singlemolecule experiments in the homework. Wewill now use the tools of statisticalmechanics
to study the regulation of gene expression. A gene is expressed when its gene product is produced
by the cell, first by transcription of mRNA by RNA polymerase and then translation of the mRNA
into protein by the ribosomes. As in the previous applications of statistical mecahanics, the power of
this approach lies in

• The ease of mathematizing cartoons using states and weights.

• Dissociation constants emerge, and these can be measured.

• Allows identification of the “knobs” that can be used to tune gene expression.

7.1 Gene expression preliminaries

Tobeing talking about regulation of gene expression, weneed to first understand the basic architecture
of a gene. We will focus on bacteria; eukaryotic gene architecture is typically more complex.

Fig. 16 show a cartoon of the promoter region of a gene. The colored rectangle represents the
DNA. The light pink region to the right is the start of the coding region of the gene. Ahead of the
gene is a promoter, which is the part of the DNA that the RNA polymerase binds to to start tran-
scription. The promoter region is decorated with binding sites for othermolecules generically termed
transcription factors.

An activating transcription factor, or activator, may bind a region near the promoter, and then
can have a favorable interaction with the polymerase. As we will see when we work out the statistical
mechanics, this results in recruiting more polymerase to the promoter and therefore gives higher
expression of the gene.

A repressive transcription factor, or repressor, may bind to a part of the promoter region, some-
times called an operator. When it does so, it occludes or otherwise inhibits the polymerase from
binding the promoter.

It is useful to know some typical numbers about this system.

quantity value BNID

RNA polymerase footprint ≈ 40 base pairs 107873

elongation rate ≈ 60 nucleotides/second 103021

initiation rate ≈ 20 transcripts/minute 111997

number of RNA polymerases per cell ≈ 1000 101440
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Figure 19.18: Schematic
representation of the simple statistical
mechanical model of recruitment and
repression. States and weights for the
case in which activation and simple
repression act simultaneously.

Note that the cartoon shows a schematic representation of the dif-
ferent ways that the region in the vicinity of the promoter can be
occupied and what the statistical weights are of each such state
of occupancy. We can compute the probability of RNA polymerase
binding by considering the ratio of favorable outcomes to the total
partition function, resulting in

pbound(P, A, R; NNS)

= Z(P − 1, A, R; NNS)e
−βεSpd + Z(P − 1, A− 1, R; NNS)e

−β(εSad+εSpd+εpa)

Ztot(P, A, R; NNS)
.

(19.24)

As before, perhaps the simplest way to interpret this result is with
reference to the regulation factor, resulting in

pbound(P, A, R; NNS) = 1

1 + [NNS/PFreg(A, R)]eβ(εSpd−ε
NS
pd)

, (19.25)

GENETIC NETWORKS 821

Figure 16: A sketch of the promoter region of a gene. The RNA polymerase (light
blue) binds to the promoter to start transcription. It is occluded from doing so when
a repressor is bound to the repressor binding site. If an activator is bound to the acti-
vated binding site, the polymerase has a favorable interaction with it when bound to the
promoter. This figure is adapted from PBoC2 Fig. 19.18. In PBoC2, the energies are
denoted with epsilons; we will use E’s.

7.2 Separation of time scales

In our modeling, we will assume that the rate of production of mRNA transcripts for a particular gene
is proportional to the equilibrium probability that a polymerase molecule is bound to the promoter of
the gene. This seems odd at first glance, that we would use an equilibrium thermodynamic property,
pbound, to describe a kinetic process, the rate of production. The key to this assumption being valid is
a separation of time scales in the transcription process.

Getting the polymerase started is inefficient. The polymerase tends to bind and rebind to the
promoter. It often generate small transcripts that are disregarded, and then rebinds and starts over.
Typically aftermany binding and unbinding events, the polymerase gets goingwith transcription. The
binding and unbinding of the polymerase to the promoter is very fast, so fast that it is typically not
measurable. The dissociation constant, however, can bemeasured, and can be as small as Kd = 5 nM
(BNID 103592).

We can write the reaction scheme of a polymerase getting started making a transcript as

unbound
k+−−⇀↽−−
k−

bound α m−−→ elongating. (7.1)

Using mass action kinetics, we can write the dynamical equations of the unbound (u), bound (b), and
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elongating (e) states as

dPu

dt = −k+Pucp + k−Pb (7.2)

dPb

dt = k+Pucp − k−Pb − α m Pb, (7.3)

dPe

dt = α m Pb, (7.4)

where Pi is the probability of being in state i and cp is the concentration of available polymerase. If
we define the dimensionless time τ = k−t, the equations are

dPu

dτ = −Pucp/Kd + Pb (7.5)

dPb

dτ = Pucp/Kd − Pb −
α m
k−

Pb, (7.6)

dPe

dτ =
α m
k−

Pb, (7.7)

where we have defined Kd = k−/k+. In looking at the above, if α m/k− ≪ 1, then the dynamics of
the secondODE (7.6) are much slower than the first (7.5). The probability Pu rapidly comes to steady
state, so

dPu

dτ = −Pucp/Kd + Pb ≈ 0. (7.8)

So, Pb is entirely determined from this equation, which is in fact an equilibrium equation. The last
equation, (7.7), then states that the rate of elongation, which is the rate of production of mRNA tran-
scripts, is proportional to the equilibrium probability of the promoter being bound, Pb.

So, our goal in quantifying the rate of production of mRNA for a target gene is to compute the
probability that the polymerase is bound to the promoter at equilibrium. The statistical mechanical
approach we have developed are well suited for this task.

7.3 Statistical mechanics of unregulated gene expression

Let us now consider computing Pb for the case where the expression is unregulated. That is, there
are no repressors or activators. There are then two states to consider, the promoter is bound or the
promoter is unbound. Let’s write a states and weights table.

state statistical weight

unbound e−β Eu

bound e−β (Eb−μ p)

Here, we have done what we did in past lectures, subtracting a chemical potential of the polymerase
to keep track of the loss of entropic degrees of freedom when it binds the promoter. But what is the
chemical potential of the unbound polymerase, μ p? We need to think a bit more carefully about this.
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It is important to know that nearly all polymerases are bound to the genome and plasmids. This
is known from experiments where cells divide asymmetrically and the DNA-less cell has virtually no
polymerases. So, all of the polymerases are bound to the DNA. They are just bound nonspecifically.

Let P be the number of polymerases that are available to transcribe the gene of interest.7 Let
NNS be the number of nonspecific sites on the genome to which a polymerase can bind. Since the E.
coli genome is about 4× 106 base pairs, and there are only about 1000 polymerases per cell, and each
polymerase is about 40 base pairs across, NNS/P ≈ 100 as a lower bound8, andwewill takeNNS ≫ P.

With this in mind, we can rewrite the states and weights table explicitly taking into account the
multiplicity of states.

state statistical weight

unbound NNS!
P!(NNS−P)! e−β PENS

pd

bound NNS!
(P−1)!(NNS−P+1)! e−β (P−1)ENS

pd e−β ES
pd

Here, ENS
pd denotes the energy of nonspecific binding of the polymerase to DNA, and ES

pd denotes the
energy of specific binding of the polymerase to DNA. If NNS ≫ P, then

NNS!

(NNS − P)! ≈ (NNS)
P. (7.9)

With this approximation, we can write Pb as

Pb =

NP−1
NS

(P−1)! e−β (ES
pd+(P−1)ENS

pd )

NP−1
NS

(P−1)! e−β (ES
pd+(P−1)ENS

pd ) + (NNS)P

P! e−β PENS
pd

. (7.10)

Dividing top and bottom by the last term in the denominator yields

Pb =
P

NNS
e−βΔEpd

1 + P
NNS

e−βΔEpd
, (7.11)

where ΔEpd = ES
pd − ENS

pd is the difference in energy between specific and nonspecific counding.
Typically, ΔEpd < 0.

In looking at this expression, it is clear that our μ in our original states and weights table on page
47 is

μ p = ENS
pd + kBT ln

P
NNS

. (7.12)

This is the same form as the chemical potential of ligands in a dilute solution, with the mole fraction
replaced by P/NNS. With this convention, we also find that the statistical weight associated with the
unbound state is unity. The states and weights table is then conveniently written as

7Some of the cell’s polymerases may be transcribing genes or are bound to other promoters. We
will take P to be all of those available with the correct σ factor.

8The ratio is even bigger, since we could consider each one-base shift to be another non-specific
binding site.
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state statistical weight

unbound 1

bound e−β (ES
pd−μ p) = P

NNS
e−βΔEpd .

Because it comes up so often, for convenience going forward, we define

ρ =
P

NNS
e−βΔEpd , (7.13)

such that the probability that an unregulated promoter is bound is Pb = ρ/(1 + ρ ).

7.4 Simple repression

Now, we will consider the case where a repressor can bind to the promoter region and occlude the
polymerase from binding. As we write our states and weights table, we are again faced with how to
write a chemical potential, this time for repressors. In fact, most repressors are also bound to DNA,
either specifically or nonspecifically. We can see this by considering that the dissociation constant
for nonspecific binding of repressors to DNA is about 10 μM.9 The number of nonspecific binding
sites, accounting for possible overlap, is about 105 per cell, for a concentration of about 200 μM. The
equilibrium expression for receptor-nonspecific site binding is

Kd =
cNS cR

cR·NS
=

(cNS − cR·NS)(c0
R − cR·NS)

cR·NS
≈ c0

NS(c0
R − cR·NS)

cR·NS
. (7.14)

In the last approximation, we have used that fact that there are far fewer repressors than nonspecific
binding sites, since repressor copy numbers range from 10 to 10,000 per cell (BNID 102632). We can
rearrange this to get

cR·NS =
c0

R c0
NS

Kd + C0
NS

=
c0

R
1 + Kd/c0

NS
. (7.15)

Because Kd ≪ c0
NS, we have cR·NS ≈ c0

R, so nearly all repressors are bound to DNA.

We therefore know that the chemical potential term in the states and weights table for repressors
is μ r = ENS

rd + kBT ln R/NNS. So, our states and weights table for repressor-mediated transcription
is

state statistical weight

unbound 1

polymrerase bound ρ

repressor bound e−β (ES
rd−μ r) = R

NSS
e−βΔErd

From the states and weights table, we get

Pb =
ρ

1 + ρ + R
NSS

e−βΔErd
. (7.16)

9I got this number from Bintu, et al., Curr. Op. Genet. Dev., 15, 116–124, 2005.
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7.4.1 Fold change

A more convenient metric to measure experimentally is the fold change in gene expression, defined
as

fold change =
Pb

Pb(R = 0)
. (7.17)

The unregulated probability of bound polymerase is always ρ/(1 + ρ ), so it is convenient to write

Pb =
ρ

1 + ρ (fold change) =
ρ

1 + ρ
1

1 + R
(1+ρ )NSS

e−βΔErd
(7.18)

The fold change is then

fold change =
1

1 + R
(1+ρ )NSS

e−βΔErd
. (7.19)

The value of ρ will vary from promoter to promoter. The term P/NNS is close to the same for
all bacterial cells, with

P
NNS

≈ 103

106 ≈ 10−3. (7.20)

For the lac promoter, ΔEpd ≈ −3kBT, and for the T7 promoter, which codes for the protein of the
T7 phage, ΔEpd ≈ −8kBT. Thus, for lac, ρ ≈ 10−2, and for T7, ρ ≈ 1. For the former cass, ρ
is small, and we have a weak promoter. A weak promoter allows for easier regulation; it takes less
repressors to see a change in expression levels, since for weak promoters,

fold change ≈ 1
1 + R

NSS
e−βΔErd

. (7.21)

In this form, we see that the quantity NNSeβΔErd is akin to a dissociation constant in ligand-receptor
binding. Defining Kr ≡ NNSeβΔErd , we can write the fold change as

fold change ≈ 1
1 + R/Kd

. (7.22)

A cell can tuneR by regulating the expression of the repressor itself, and evolution can tune ΔErd.

7.5 Simple activation

Let us now turn our attention to simple activation. In this case, there is no repressor; just an activator
that has a favorable interaction with the polymerase. We can again write our states and weights, and
can do so taking shortcuts we have already worked out. Specifically, we know that it is always the
difference in energy between specific and nonspecific binding that comes into the statistical weights.
We also know that most activators, like repressors, are bound to promoter regions or to nonspecific
sites on the DNA. The only added wrinkle in this example is the extra energy, ΔEpa, in the state
where both the activator and polymerase are bound that is due to the favorable interaction between
the activator and polymerase.
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state statistical weight

unbound 1

polymerase bound ρ

activator bound A
NSS

e−βΔEad

activator and polymerase bound ρ A
NSS

e−β (ΔEad+ΔEpa)

The numerator in the expression for Pb contains the weights where the polymerase is bound, in this
case two of entries from the states and weights table.

Pb =
ρ + ρ A

NSS
e−β (ΔEad+ΔEpa)

1 + ρ + A
NSS

e−βΔEad + ρ A
NSS

e−β (ΔEad+ΔEpa)

=
ρ

1 + ρ
1 + A

NSS
e−β (ΔEad+ΔEpa)

1 + A
(1+ρ )NSS

e−βΔEad + ρ A
(1+ρ )NSS

e−β (ΔEad+ΔEpa)

=
ρ

1 + ρ
1 + (A/Kd,a)e−βΔEpa

1 + A/Kd,a +
ρ

1+ρ (A/Kd,a)e−βΔEpa
. (7.23)

Here, we have defined Kd,a analogously to Kd,r from before,

Kd,a = NSS eβΔEad . (7.24)

This is the dissociation constant activator binding to the promoter region.

We can immediately extract the expression for the fold change,

fold change =
1 + (A/Kd,a)e−βΔEpa

1 + A/Kd,a +
ρ

1+ρ (A/Kd,a)e−βΔEpa
. (7.25)

The fold change can actually be less than one if the promoter is strong (or if ΔEpa is large and positive.
That means that presence of the activator can actually decrease expression. If we want good control
of expression by an activator, then, we need to have a favorable interaction between the polymerase
and the activator (ΔEpa < 0) and a weak promoter (ρ ≪ 1). Provided this is the case, such that
ρ/(1+ ρ ) ≈ ρ ≪ 1, the maximum possible fold change can be found by taking the limit of large A.
We get a maximum fold change of e−ΔEpa .

7.6 Cooperative repression

Now imagine a situation where two repressors can bind to the operator. We may get additional ener-
getic contribution if there are two repressors,10 say ΔErr. We can again directly write the states and
weights table.

10PBoC2 uses the notation ΔErr = J.
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state statistical weight

unbound 1

polymrerase bound ρ

one repressor bound 2R/Kd,r

two repressors bound (R/Kd,r)
2e−βΔErr

The probability of having the polymerase bound is then

Pb =
ρ

1 + ρ
1

1 + 1
1+ρ (R/Kd,r) (2 + (R/Kd,r)e−βΔErr)

. (7.26)

For a weak promoter, this reduces to

Pb =
ρ

1 + ρ
1

1 + (R/Kd,r) (2 + (R/Kd,r)e−βΔErr)

=
ρ

1 + ρ
1

(1 + R/Kd,r)
2
+ (e−βΔErr − 1) (R/Kd,r)2

. (7.27)

The case where there is no enhanced binding of the second receptor, i.e, ΔErr = 0, reduces to

Pb =
ρ

1 + ρ
1

(1 + R/Kd,r)
2 . (7.28)

So, cooperative binding, with ΔErr < 0, gives greater repression than without cooperative binding.

The analyses in this lecture demonstrate how carefully considering the statistical mechanics of
gene expression reveals what parameters, usually energetics of binding interactions, may be adjusted
to tune the properties of regulation of gene expression.
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8 Molecular diffusion and random walks

In this lecture, we will study diffusion, both from a continuum perspective, and from the perspective
of individual particles undergoing random walks. In doing so, we will explore some useful concepts
about conservation laws in continuum mechanics and statistical treatment of random walks.

8.1 Conservation of mass in a continua

We think about diffusion in a continuum, that is ignoring the particulate nature of matter and con-
sidering properties that vary continuously in space, like densities and concentrations. In this context,
we think of diffusion as the tendency for a species to redistribute in space, going from regions of high
concentration to regions of low concentration.

�x

�y

�z

x

yz

�x

�y

�z

x

yz

Figure 17: Three adjacent control volumes. We are considering the center con-
trol volume; note where the origin of the coordinate axis system is.

To build the theoretical framework, we can think about dividing space up into little boxes called
control volumes, also called volume elements. Consider three control volumes sketched in Fig. 17.
Wewill consider the center control volume. Material andmove in and out of this control volume. For
now, we will only consider movement in the x-direction, and we will consider the mass of a species
of interest, e.g. a specific protein, which we will denote with a subscript i. Let mi(x, t) be the mass
of this species at position x at time t. This may seem odd to define a mass at a point in space. Herein
lies one of the key assumptions behind defining continua, and I ask you to suspect disbelief as accept
that we can define such a thing. We can then do some accounting of mass in our control volume. This
may be written using a seemingly trivial word equation.

accumulation = input− output+ generation− consumption. (8.1)

We can write the respective terms in the accounting equation for some time interval Δt.

accumulation = mi(x, t + Δt)− mi(x, t), (8.2)

input = ji,x(x − Δx, t)Δy Δz Δt, (8.3)

output = ji,x(x, t)Δy Δz Δt, (8.4)

generation− consumption = terms from chemical rate laws. (8.5)
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We will neglect chemical reactions for now, but are easy to put in later. We have defined by ji,x the
x-directional flux of mass of species i. A flux is the rate of flow per surface area. The flux ji,x is then
the mass that flows through the surface of the control volume per area per time. So, if we write down
our mass accounting, we get

mi(x, t + Δt)− mi(x, t) = ji,x(x − Δx, t)Δy Δz Δt − ji,x(x, t)Δy Δz Δt. (8.6)

Dividing both sides by Δx Δy Δz Δt gives

mi(x, t + Δt)− mi(x, t)
Δx Δy Δz Δt =

ji,x(x − Δx, t)− jx,i(x, t)
Δx . (8.7)

We note that mi/Δx Δy Δz is the density, or mass concentration, of the species of interest, which we
will define as ρ i. This gives

ρ i(x, t + Δt)− ρ i(x, t)
Δt =

ji,x(x − Δx, t)− ji,x(x, t)
Δx . (8.8)

Now, if we take the limit of Δx and Δt both going to zero and use the finite difference formulas, we
get

∂ ρ i
∂t = −∂ji,x

∂x , (8.9)

or including chemical reactions,

∂ ρ i
∂t = −∂ji,x

∂x + rxns. (8.10)

This result generalizes to three dimensions as

∂ ρ i
∂t = −∇ · ji + rxns, (8.11)

where∇ is the gradient operator, and ji is the vector-valued flux. This is, in fact, a general form of a
conservation law.

rate of change = negative divergence of a flux+ net generation. (8.12)

This is an important equation to keep in mind and is generally true for any conserved quantity that
can be described in a continuum.

8.1.1 General conservation laws in continua

We can more elegantly write the conservation law we have just described. Consider an arbitrarily
shaped control volume, shown in Fig. 18. We define by n the unit normal vector pointing out of the
surface. The rate of change of a conserved quantity ξ in the volume element is given by the net flux
of that quantity into the volume element, jξ , integrated over the entire surface. Written out, this is

∂

∂t

∫
dV ξ = −

∫
dS jξ · n. (8.13)

TheGauss divergence theorem says that∫
dS j · n =

∫
dV∇ · jξ . (8.14)

54



Applying the Gauss divergence theorem, taking the time differential into the integral in (8.13), and
rearranging gives∫

dV
(
∂ ξ
∂t +∇ · jξ

)
= 0. (8.15)

This must be true for any arbitrary control volume, so the integrand must be zero. This gives

∂ ξ
∂t = −∇ · jξ . (8.16)

For conservation of mass of a given species, ξ = ρ i, as we have already derived.

n

Figure 18: A volume element with a unit normal pointing out of its surface.

8.1.2 Advective flux

We may have an advective flux, which comes from flowing of material. Imagine that species i is
translating with velocity vi. Then, the adjective flux is ji = ρ ivi. This is the rate that mass of species
i flows through the surface of the control volume per unit time. Then, the conservation law reads

∂ ρ i
∂t = −∇ · ji = −∇ · (ρ ivi). (8.17)

If we sum over all species,∑
i

(
∂ ρ i
∂t = −∇ · (ρ ivi)

)
=

∂ ρ
∂t = −∇ · (ρv), (8.18)

where v is the bulk velocity and ρ is the density of the material. Applying the chain rule, this is

∂ ρ
∂t = −ρ∇ · v − v · ∇ρ . (8.19)

If the material is incompressible, or if it has constant density, then ∂ ρ/∂t = 0 and∇ρ = 0, then

∇ · v = 0. (8.20)

This is known as the continuity equation, true for an incompressible material, such as water or cy-
toplasm.
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8.2 Fick’s laws and diffusive flux

To treat diffusion, we need to write an expression for the diffusive flux of species i, ji.11 We can think
about this phenomenologically. We know from experience that if you put a high concentration of,
say, food coloring in the middle of a glass of water, diffusion brings the food coloring for areas of
high concentration to areas of low concentration. Therefore, the flux of diffusing species goes in the
opposite direction of the concentration gradient, i.e., from high to low. So, to first order, the diffusive
flux should be proportional to the gradient of concentration. We call the constant of proportionality
Di, referred to as a diffusion coefficient, or diffusivity. The result is

ji = −Di∇ρ i. (8.21)

Instead of writing themass flux, we could insteadwrite the particle flux. Redefining ji/M → ji, where
M is the molecular mass, we can write the expression for the particle flux as

ji = −Di∇ci. (8.22)

This is known as Fick’s first law.

Substituting Fick’s first law into the general statement of conservation gives

∂ci
∂t = Di∇2ci, (8.23)

a result known as Fick’s second law.

8.3 Statistical treatment of diffusion

Having derived12 a partial differential equation describing diffusive dynamics, we will now treat dif-
fusion statistically, taking a particulate view. A diffusing particle moves around space due to repeated
bombardments by solvent molecules, which are themselves sailing around driven by thermal energy.

To model how the diffusing particle moves, we will again restrict ourselves to one dimension
and later generalize to three. We can think of a diffusing particle as making a small hop, either left
(negative x-direction) or right (positive x-direction) due to collisions with solvent molecules. Let ℓ be
the distance of the hop and let τ be the amount of time it takes to make a hop. In some amount of
time t, the diffusing particle will take n = t/τ total hops. We take each hop to be independent of all
others, and the diffusing particle has a 50/50 chance of taking a left or right hop. So, the number r of
rightward hops out of a total of n the particle takes is Binomially distributed with probability 1/2, or

r | n ∼ Binom(n, 1/2). (8.24)

We know the mean and variance of a Binomial distribution, so we can readily write down

mean r = ⟨r⟩ = n/2, (8.25)

variance of r = ⟨r2⟩ − ⟨r⟩2 = n/4. (8.26)

11Wedo seem to be overloading the symbol ji. It will always be clear what kind of fluxwe are talking
about by context.

12We did not really derive, but reasoned, I would say.
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From these,

⟨r2⟩ = n
4
+

n2

4
=

n
4
(n + 1). (8.27)

While it is useful to know these moments of r in terms of n, we would really like to know the
moments of the total displacement from the origin, x, in terms of t. We know how these variables are
related.

x = ℓr − ℓ(n − r) = ℓ(2r − n), (8.28)

t = nτ . (8.29)

Thus, we have

⟨x⟩ = ℓ(2⟨r⟩ − n) = ℓ(2
n
2
− n) = 0. (8.30)

Thismeans that, on average, the diffusing particle ends up at the origin. Importantly, this is on average.
The particle doesmake excursions away, which is why it is important to compute the secondmoment.

⟨x2⟩ = ⟨ℓ2(2r − n)2⟩ = ℓ2⟨4r2 + n2 − 4nr⟩ = ℓ2 (4⟨r2⟩+ n2 − 4n⟨r⟩
)

= ℓ2 (n(n + 1) + n2 − 2n2) = ℓ2n = ℓ2 t
τ (8.31)

So, the mean x is zero and the variance is ⟨x2⟩ − ⟨x⟩2 = ⟨x2⟩ = ℓ2t/τ .

For largen, thedeMoivre-Laplace theorem states that theBinomial distribution iswell-approximated
by a Gaussian distributed with the same mean and variance as the Binomial. Thus, we have

r | n ∼ Norm(n/2,
√

n/2), (8.32)

or, more conveniently,

x | t ∼ Norm(0, ℓ
√

t/τ ). (8.33)

We can write out the probability density function for the displacement x as

P(x; t) = 1√
2πℓ2t/τ

exp
[
− x2

2ℓ2t/τ

]
. (8.34)

This is convenient because the deMoivre-Laplace theorem allows us to write probability of displace-
ments, which we startedmodeling as a discrete randomwalk, as a continuous probability distribution.
This enables differentiation and integration of the distribution.

This can be generalized to three dimensions by using a trivariate Gaussian distribution. The
covariance matrix is diagonal because the steps along the orthogonal directions are uncorrelated.

P(x; t) =
(

1
2πℓ2t/τ

)3/2

exp
[
− x · x

2ℓ2t/τ

]
. (8.35)

8.4 Connection to the diffusion equation

We have previously derived a partial differential equation describing diffusive dynamics,

∂c
∂t = D∇2c. (8.36)
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How does this connect to the statistical treatment?

It stands to reason that c(x, t) is proportional to P(x; t), or

c(x, t) = n0 P(x; t), (8.37)

where n0 is the total number of particles present. If we imagine particles concentrated in a small area
of a large volume V,

n0 =

∫
dV c(x, t) ≈

∫ ∞

−∞
dx
∫ ∞

−∞
dy
∫ ∞

−∞
dz c(x, t)

=

∫ ∞

−∞
dx
∫ ∞

−∞
dy
∫ ∞

−∞
dz n0 P(x; t) = n0. (8.38)

If we plug c(x, t) = n0 P(x; t) into the PDE for diffusive dynamics, we get

∂P(x; t)
∂t = D∇2P(x; t). (8.39)

We can compute the derivatives from our expression for P(x; t), (8.35).

∂P
∂t =

1
2

(
x2

ℓ2t2/τ − 1
t

)
P(x; t), (8.40)

∇2P =
τ
ℓ2

(
x2

ℓ2t2/τ − 1
t

)
P(x; t). (8.41)

Therefore, for (8.39) to hold, we must have

D =
ℓ2

2τ . (8.42)

Therefore,

P(x; t) =
(

1
4πDt

)3/2

exp
[
−x · x

4Dt

]
. (8.43)

Or, in one dimension,

P(x; t) = 1√
4πDt

exp
[
− x2

4Dt

]
. (8.44)

Note that we have now found the Green’s function to the diffusion equation (also known as the heat
equation) using statistical arguments!

Now that we have the probability density function, we can again consider the moments. The
mean displacement is again zero, and the variance is

⟨x · x⟩ = ⟨x2⟩+ ⟨y2⟩+ ⟨z2⟩ = 6Dt. (8.45)

In one dimension this is 2Dt, and in two dimensions it is 4Dt. Importantly, the mean square displace-
ment varies linearly with time.
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8.5 Stokes-Einstein-Sutherland relation

We have already discussed that diffusion is driven by thermal energy. How, then, can we connect the
parameter describing diffusion, the diffusion coefficient, to the thermal energy kBT? You will work
this out in your homework, deriving the Einstein-Smoluchowski equation,

D =
kBT

f , (8.46)

where f is the frictional drag on the diffusing particle, also known as the inversemotility. The frictional
drag depends on the shape of the particle. There is a good discussion on this in Howard Berg’s book
Random Walks in Biology. For a sphere, George Stokes worked out that f = 6π ηa, where a is the
radius of the sphere. Then, we get the Stokes-Einstein-Sutherland relation,

D =
kBT

6π ηa . (8.47)

8.6 Diffusion in cells

We now address a pertinent question in cell physiology: How long does it take for a protein to diffuse
across an E. coli cell? The distance diffused covered by diffusion is roughly the root mean square
distance, or

ℓ =
√
⟨x2⟩ =

√
2Dt. (8.48)

As a result, the time to diffuse a distance ℓ is

t = ℓ

2D . (8.49)

The distance across an E. coli cell is ℓ ≈ 2 μm. We are now left to determine the diffusion coefficient
D. We can use the Stokes-Einstein-Sutherland relationship to do so. As we have seen, kBT ≈ 4.1
pN-nm. The radius of a globular protein is about a ≈ 5 nm. The viscosity of water is about

η water ≈ 10−3 N-s/m2 = 10−9 pN-s/nm2. (8.50)

So, we can estimate

D ≈ kBT
6π ηa ≈ 4.1 pN-nm

6π · 10−9 pN-s/nm2 · 5 nm
≈ 4 × 107 nm2/s = 40 μm2/s. (8.51)

This diffusion coefficient is a bit too high because the viscosity of cytoplasm is typically much bigger
than pure water. For example, the measured diffusion coefficient of GFP is about 6 μm2/s (BNID
112266), whereas it is about 90 μm2/s in pure water (BNID 100301). Taking D ≈ 6 μm2/s, we have
a time to diffuse across the cell of

t = ℓ

2D ≈ (2 μm)2

2 · 6 μm2/s
≈ 0.3 seconds. (8.52)

We just work out how long it takes for a protein to diffuse a distance ℓ. Now, let us consider
how far a protein will diffuse in time t. We already know that is ℓdiffusive =

√
2Dt. It is instructive to

compare this to directed transport via motor proteins along filaments. The distance traveled in that
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case is given by the speed v of the motor times time, or ℓdirected = vt. The ratio of the respective
lengths is then

ℓdiffusive

ℓdirected
=

√
2D
v

1√
t
. (8.53)

For short times, that is

t < 2D
v (8.54)

diffusion will result in further transport than directed motion. For longer times, directed transport
moves cargo over longer distances. This is illustrated in Fig. 19.

 

i

Figure 19: Distance transported as a function of time for directed transport and
diffusion.

A typical motor speed is about 1000 nm/s (101506), we have a crossover length, below which
diffusion is faster and above which directed transport is faster, of about 10 μm. The corresponding
crossover time is about 10 seconds. Interestingly, bacteria have minimal directed transport compared
to larger eukaryotic cells. Apparently, bacteria do not need it, since diffusion is fast enough.
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9 Introduction to polymers

Polymers abound in the cell. DNA, RNA, and proteins are all polymers. Proteins can also connect
together to make larger filamentous structures, like actin filaments and microtubules, which are also
polymers. In the next few lectures, we will study polymer physics with an eye toward polymers in
cells.

9.1 Polymers as random walks

In the last lecture, we considered diffusion from a statistical perspective. In this lecture, we take a
statistical approach to polymer configurations. A polymer, a long, chainlike molecules, can be repre-
sented as a space curve, as shown in the top sketch in Fig. 20. We can also discretize the polymer,
much as we have done with discretizing space in a solution containing ligands and receptors, to enable
a statistical treatment, as sketched in the bottom drawing.
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Figure 20: A polymer represented as a space curve and as a FJC.

In our first treatment of polymers, we will treat each of the discretized segments of a polymer as
a random step. Such a polymer is akin to the random walks we encountered when modeling diffusing
molecules. The analogy is convenient because we have already worked out many of the main results.
To use them, let us make the analogy more formal.

Wewill denote the length of each segment as b, referred to as theKuhn length. TheKuhn length
is analogous to the step length in a random walk, ℓ. A polymer of length L has N = L/b segments. N
is the number of steps of a random walk, which was given by t/τ in our treatment of random walks.
By directly applying the analogy to the results we derived in our discussion of random walks, we can
write down the probability density function for the signed end-to-end distance R of a polymer; it is
the same as the end position of a random walk. In one dimension, this is

P(R;N) =

(
1

2πNb2

) 1
2

e−R2/2Nb2
. (9.1)

In three dimensions, steps in the respective directions are independent, and we can define R =
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(Rx,Ry,Rz)
T, such that

P(R;N) =

(
1

2πNxb2
1

2πNyb2
1

2πNzb2

) 1
2

exp
[
− R2

x
2Nxb2 −

R2
z

2Nzb2 −
R2

z
2Nzb2

]
. (9.2)

For long walks, the number of steps in the x-, y-, and z-directions are approximately equal such that
Nx ≈ Ny ≈ Nz ≈ N/3, giving

P(R;N) =

(
3

2πNb2

) 1
2

e−3R·R/2Nb2
. (9.3)

Evidently, fromwhat we know about moments of Gaussian distributions, the mean end-to-end vector
is,

⟨R⟩ = 0, (9.4)

and the mean square end-to-end distance is

⟨R · R⟩ = Nb2 = Lb. (9.5)

The radius of gyration, Rg is the average distance of a polymer from its center of mass. This is the
physical radius of the polymer. It can be shown (which you may do in your homework) that

R2
g =

1
6
⟨R · R⟩ = 1

6
Nb2. (9.6)

Thus, the distance across a polymer modeled as a random walk in space, 2Rg scales like the square
root of the polymer length, or.

Rg ∼ N 1
2 b. (9.7)

A quick note on nomenclature: There are other models of polymers that give a Gaussian distri-
bution for the end-to-end vector we have just derived using a random walk on a three-dimensional
lattice. A freely-jointed chain has the same probability density function. In this model, the angle
each segment of a polymer makes with the previous one is completely free. A Gaussian chain, also
called a Gaussian coil, is modeled a set of N beads connected by springs with equilibrium length b.
It, too, has the same probability density function as the three-dimensional lattice. We will therefore
use the terminology “random walk,” “freely-jointed chain,” and “Gaussian chain” interchangeably.

9.2 Polymers are not always random walks

Polymers described as random walks have no interactions with themselves. This is not the case for
many biopolymers. Many proteins, for example, have strong interactions and are tightly packed in
globular conformations. In this case, the polymer is closely packed, such that

mass of protein = ρV, (9.8)

where ρ is the density and V is the volume. For a closest packed protein, the volume is approximately
that of a sphere,

V ≈ 4
3

πR3
g, (9.9)
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giving

Rg ∝ (mass)
1
3 . (9.10)

Since N ∼ mass, we have

Rg ∼ N 1
3 b (9.11)

for a tightly packed polymer like a globular protein.

As another extreme, we can think about unfolded polymers. These polymers cannot cross them-
selves, resulting in an excluded volume interaction. All polymers cannot cross themselves, but poly-
mers modeled this way are said to be self-avoiding. In this case, the radius of gyration is larger than
that for a random walk. Computing how the radius of gyration scales with N is a challenging calcu-
lation, obtained numerically, but worked out approximately theoretically by de Gennes in 1972. The
result is

Rg ∼ N0.588b. (9.12)

So, in summary,

densely packed: Rg ∼ N 1
3 b, (9.13)

random walk: Rg ∼ N 1
2 b, (9.14)

self-avoiding walk: Rg ∼ N0.588b. (9.15)

The random-walk model is therefore between two extremes in scaling. It is a widely used model, and
we will use it repeatedly.

9.3 Pulling on a Gaussian coil

Imaginewe can grip the ends of aGaussian coil and exert a force f/2 on each end in opposite directions
for a total extensile force f. What force f is necessary to keep the ends a distance R apart?

We start bywriting that the free energy for the chain, noting that−f andR are conjugate variables.

F = −fR − TS. (9.16)

We can use the Gibbs expression for the entropy,

S = −kB
∑
configs

P(config|R) ln P(config|R), (9.17)

where the sum is over all chain configurations commensurate with an end-to-end distance R. All
configurations for a given R are equally likely, so

P(config|R) = (Nconfig(R))−1
. (9.18)

But the number of configurations is proportional to P(R;N), so

S = kB
∑
configs

1
Nconfig(R)

ln Nconfig(R) = kBNconfig(R)
1

Nconfig(R)
ln Nconfig(R)
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= kB ln Nconfig(R) = const+ kB ln P(R;N). (9.19)

Therefore, we have13

F = −fR − kBT ln P(R;N) + const. (9.20)

At equilibrium ∂F/∂R = 0,

∂F
∂R = −f − kBT ∂

∂R ln P(R;N). (9.21)

Using our expression for P(R;N) and computing the derivative,

∂

∂R ln P(R;N) =
∂

∂R

(
− 3R2

2Nb2

)
= − 3R

Nb2 = −3R
Lb . (9.22)

Thus, the magnitude of the force is

|f| = 3kBT
Lb R. (9.23)

The force is linear in the displacement R. This looks like a spring with spring constant 3kBT/Lb,
which is why pulled Gaussian coils are sometimes called entropic springs.

13It is strange that we are taking the logarithm of P(R;N), which is a quantity with units. The unit
issue is resolved by factors absorbed into the contant.
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15 The cell as a material

The cell as a whole behaves like a viscoelastic material. By viscoelastic, we mean the the cell has
properties that are both fluid-like and solid-like. As a reminder, the stress/strain relationship for a
solid is

σ = Eε , (15.1)

where ε is the strain, σ is the stress, and E is the Young’s modulus. That is to say that the stress is
directly proportional to the strain, at least for small stresses/strains. Nonlinearities start to become
important for larger stresses or strains.

Conversely, the stress is proportional to the strain rate for a viscous fluid.

σ = η ε̇ , (15.2)

where the overdot signifies time differentiation. This makes sense if we consider that stress coun-
teracts viscous dissipation due to velocity gradients. You may recall from our discussion of elastic
beams that the strain is the normalized displacement of material. As discussed in section 5.3 and 5.4
of PBoC2, the strain is given by the spatial derivative of the displacements u; ε = Δa/a0 = ∂u/∂x
in one dimension. Then,

ε̇ =
∂

∂t
∂u
∂x =

∂

∂x
∂u
∂t =

∂v
∂x , (15.3)

where v is the local velocity at which the material is moving, equal to the time derivative of the dis-
placement. So, the strain rate is equal to the velocity gradient, which is proportional to the stress in a
viscous fluid.

15.1 Storage and loss moduli

Imagine the following thought experiment. Amaterial (either a cell, or something like a reconstituted
actin network) is subjected to a periodic stress with frequency ω and amplitude σ0.

σ (t) = σ0 sin ωt, (15.4)

After some time, the strain will also be periodic, with amplitude ε0 and frequency ω . However, it
will not necessarily be in phase with the stress, so we define a phase shift δ .

ε (t) = ε̄ + ε0 sin(ωt − δ ), (15.5)

where ε̄ is the baseline strain from the oscillation. If δ = 0, then σ ∝ ε , so the material behaves
like an elastic solid.14 If δ = π/2, then

ε (t) = ε̄ + ε0 sin(ωt − δ ) = ε̄ + ε0 cos ωt. (15.6)

In this case, then σ (t) ∝ ε̇ (t), so thematerial behaves like a viscous solid. For phase shifts in between,
thematerial behaves both like a solid (strain in phase with the stress) and like a viscous fluid (strain out
of phase with the stress). We can define parameters to describe the solid-like and fluid-like responses

14I am being loose with the ∝ symbol here. There is an additive constant, ε̄ , but that constant is
zero for purely elastic responses, as we will see later in the response for a Maxwell material.
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of a material to stress. These parameters are respectively the storage and loss moduli. They are
defined in terms of the amplitudes of the stress and strain amplitudes and the phase shift δ . The are

storage modulus = E′ =
σ0

ε0
cos δ (15.7)

loss modulus = E′′ =
σ0

ε0
sin δ . (15.8)

Note that the storage and loss moduli are sometimes denoted respectively as G′ and G′′. They are in
general both frequency dependent. They can bemeasured empirically. Typically the stress is imposed
(so σ0 is known), and the strain is measured. The storage modulus is a measure of the solid-like
response and the lossmodulus is ameasure of the viscous-like response. They are sometimes referred
to as elastic and viscous moduli for that reason. Note that these moduli are not the Young’s modulus
and viscosity of the material. They are defined by equations (15.7) and (15.8). How they relate to
other parameters is dependent on how we choose to model the material, which is the subject of the
next lecture.

15.2 Doing the “thought” experiment with reconstituted actin

The thought experiment of applying a periodic stress to a material is possible via several means. The
amplitude and phase of the strain response is measured, enabling determination of the storage and
loss module to characterize the material.

Chaudhuri and coworkers did a clever experiment in which they grew an actin network on the
tip of an atomic force microscope. The network grew to a surface, and then they could move the
surface up and down at set frequencies and measure the strain by observing the deflection of the
AFM cantilever. (See Fig. 21).

at 5 Hz, is similar to the elastic modulus measured on various cell
types19–22 and in a previous reconstitution of actin-based motility23.
Dendritic actin network elasticity is significantly higher than the
elasticity of actin networks reconstituted in solution containing the
Arp2/3 complex (,1 Pa), though differences in concentration and
components could account for this disparity24,25. The average elasti-
city of the actin networks studied here was found to be independent
of prestressing by myosin II motors (see Supplementary Information
D).

To understand further the mechanical properties of growing dend-
ritic actin networks, we probed the stress dependence of the elastic
modulus5,7 (see Methods). A typical experiment is shown in Fig. 3a
(black trace) where stress was increased on the network incremen-
tally, and the elasticity at each value of applied stress was measured.
For stresses up to ,15 Pa the elasticity remained constant, indicating
a linear elastic regime. Then the elasticity increased with stress in a
stress-stiffening regime, as has been seen previously4–6, for stresses up
to a critical stress, sc < 270 Pa. Above the critical stress, we found that
the elasticity of the network gradually decreased with stress in a
stress-softening regime.

Stress softening has been previously explained by network rupture
or crosslinker rearrangement. In rigidly crosslinked actin networks,
stress softening has been attributed to the fracture of extended fila-
ments or crosslinking/branch points at sc, after which elasticity dras-
tically decreased4–6. Alternatively, softening was proposed to occur as
a result of the unbinding of flexible crosslinkers above sc, which
either remain unbound or re-bind to form crosslinks at different
positions7. For either of these explanations, stress softening would
reflect permanent alterations in the network that would lead to irre-
versibility in the elasticity of the network. That is, higher elasticities
could not be recovered by reducing network loading from stresses
above sc (refs 4–7). However, in dendritic actin networks, the stress-

softening behaviour was reversible: the elasticity measured as the
stress was reduced to sc matched the elasticity seen for increasing
stress (Fig. 3a, red trace). This was seen in all experiments (Fig. 3b), so
stress softening in the dendritic actin network must arise from a
reversible mechanism.

A plausible explanation for reversible stress softening is through
elastic buckling of individual filaments under compression. A popu-
lation of filaments in the dendritic network, based on their length and
orientation, will begin to buckle at a threshold stress. Upon buckling,
these filaments are infinitely compliant while still supporting Fb (ref.
12). As a result, the number of load-bearing elements decreases for
higher stresses, resulting in a decrease in the effective stiffness of the
network. As the stress is increased, more filaments buckle, reducing
the elasticity of the network further. Because filaments are assembled
into an interconnected dendritic network, buckled filaments do
not collapse completely, and they can unbuckle when the force is
reduced, making the process of buckling reversible with load.
Stress softening has been predicted from simulations of athermal
crosslinked actin networks to occur as a result of filament buckling
and also in an elastic element model of the cytoskeleton26,27, although
such models do not predict stress stiffening before softening.
Interestingly, reversible elastic buckling of component elements is
observed under high compressional forces in some types of foams28.
Electron micrographs have shown the actin cytoskeleton ultrastruc-
ture to exhibit similarities with open lattice foams, so that this buck-
ling behaviour might be expected3.

Buckling of individual filaments can occur at forces consistent
with the observed stress softening, based on a simple calculation.
Using published electron micrographs of dendritic actin networks
reconstituted in vitro in a similar biochemical system, we estimate
filament lengths Lc to be 0.1–1 mm (ref. 17). We calculate an expected
buckling force Fb of 0.5–50 pN per filament using these lengths and
assuming Euler buckling, although the behaviour in a constrained
environment can lead to higher buckling forces29. In our experi-
ments, the average force per filament at sc (233 Pa, the mean value
from the inset of Fig. 3b), using an average filament spacing of 50–
100 nm (ref. 17), is calculated to be 0.45–2 pN, which lies within the
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Figure 1 | AFM-based microrheology of growing dendritic actin networks.
a, Cartoon illustrating the measurement geometry in which the surface is
driven sinusoidally (blue sinusoid and double-headed arrow), and the force
transmitted through the network (red mesh) is transduced by the cantilever
(pink sinusoid and double-headed arrow). b, Fluorescence micrograph of
the actin network, which is used to calculate the network area A. Scale bar is
10 mm. c, Graph showing surface drive and cantilever response signal as a
function of time for a 5 Hz measurement (colours are as in a). Note the
cantilever response is damped with respect to the drive signal indicating
compression of the network. This technique has the effect of applying a
sinusoidal stress on the network where hydrodynamic coupling was found to
be negligible (see Supplementary Information B). d, Stress and strain graph
calculated from measurement in c showing stress (black) and strain (red) as a
function of time (see Methods).
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Figure 2 | Frequency dependence of elastic (filled triangles, E9) and viscous
(open triangles, E99) moduli. The traces were constructed by averaging
normalized data from 11 separate experiments and 21 different frequency
sweeps. Each measurement of the elastic and viscous moduli was normalized
by the average elastic modulus at 5 Hz taken before and after the
measurement (see Supplementary Information C). The best-fit power-law
exponent for E9(f) was determined to be x 5 0.13 (dotted line), and the
average elastic modulus at 5 Hz was 985 6 655 Pa (mean 6 s.d.), which are
consistent with previous studies on cells. In addition to the power-law
behaviour, the viscous modulus has a similar shape to those seen previously.
Error bars on both curves are normalized s.d.
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Figure 21: a) Schematic of experimental setup. b) Fluorescence image of an actin
network growing on a cantilever. Scale bar is 10 μm. Figure taken from Chaudhuri,
Parekh, and Fletcher, Nature, 445, 295–298, 2007.

A typical stress/strain temporal profile from the experiment is shown in Fig. 22. The strain lags
the stress slightly, indicating that the actin network is predominantly, though not purely, elastic.
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at 5 Hz, is similar to the elastic modulus measured on various cell
types19–22 and in a previous reconstitution of actin-based motility23.
Dendritic actin network elasticity is significantly higher than the
elasticity of actin networks reconstituted in solution containing the
Arp2/3 complex (,1 Pa), though differences in concentration and
components could account for this disparity24,25. The average elasti-
city of the actin networks studied here was found to be independent
of prestressing by myosin II motors (see Supplementary Information
D).

To understand further the mechanical properties of growing dend-
ritic actin networks, we probed the stress dependence of the elastic
modulus5,7 (see Methods). A typical experiment is shown in Fig. 3a
(black trace) where stress was increased on the network incremen-
tally, and the elasticity at each value of applied stress was measured.
For stresses up to ,15 Pa the elasticity remained constant, indicating
a linear elastic regime. Then the elasticity increased with stress in a
stress-stiffening regime, as has been seen previously4–6, for stresses up
to a critical stress, sc < 270 Pa. Above the critical stress, we found that
the elasticity of the network gradually decreased with stress in a
stress-softening regime.

Stress softening has been previously explained by network rupture
or crosslinker rearrangement. In rigidly crosslinked actin networks,
stress softening has been attributed to the fracture of extended fila-
ments or crosslinking/branch points at sc, after which elasticity dras-
tically decreased4–6. Alternatively, softening was proposed to occur as
a result of the unbinding of flexible crosslinkers above sc, which
either remain unbound or re-bind to form crosslinks at different
positions7. For either of these explanations, stress softening would
reflect permanent alterations in the network that would lead to irre-
versibility in the elasticity of the network. That is, higher elasticities
could not be recovered by reducing network loading from stresses
above sc (refs 4–7). However, in dendritic actin networks, the stress-

softening behaviour was reversible: the elasticity measured as the
stress was reduced to sc matched the elasticity seen for increasing
stress (Fig. 3a, red trace). This was seen in all experiments (Fig. 3b), so
stress softening in the dendritic actin network must arise from a
reversible mechanism.

A plausible explanation for reversible stress softening is through
elastic buckling of individual filaments under compression. A popu-
lation of filaments in the dendritic network, based on their length and
orientation, will begin to buckle at a threshold stress. Upon buckling,
these filaments are infinitely compliant while still supporting Fb (ref.
12). As a result, the number of load-bearing elements decreases for
higher stresses, resulting in a decrease in the effective stiffness of the
network. As the stress is increased, more filaments buckle, reducing
the elasticity of the network further. Because filaments are assembled
into an interconnected dendritic network, buckled filaments do
not collapse completely, and they can unbuckle when the force is
reduced, making the process of buckling reversible with load.
Stress softening has been predicted from simulations of athermal
crosslinked actin networks to occur as a result of filament buckling
and also in an elastic element model of the cytoskeleton26,27, although
such models do not predict stress stiffening before softening.
Interestingly, reversible elastic buckling of component elements is
observed under high compressional forces in some types of foams28.
Electron micrographs have shown the actin cytoskeleton ultrastruc-
ture to exhibit similarities with open lattice foams, so that this buck-
ling behaviour might be expected3.

Buckling of individual filaments can occur at forces consistent
with the observed stress softening, based on a simple calculation.
Using published electron micrographs of dendritic actin networks
reconstituted in vitro in a similar biochemical system, we estimate
filament lengths Lc to be 0.1–1 mm (ref. 17). We calculate an expected
buckling force Fb of 0.5–50 pN per filament using these lengths and
assuming Euler buckling, although the behaviour in a constrained
environment can lead to higher buckling forces29. In our experi-
ments, the average force per filament at sc (233 Pa, the mean value
from the inset of Fig. 3b), using an average filament spacing of 50–
100 nm (ref. 17), is calculated to be 0.45–2 pN, which lies within the
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Figure 1 | AFM-based microrheology of growing dendritic actin networks.
a, Cartoon illustrating the measurement geometry in which the surface is
driven sinusoidally (blue sinusoid and double-headed arrow), and the force
transmitted through the network (red mesh) is transduced by the cantilever
(pink sinusoid and double-headed arrow). b, Fluorescence micrograph of
the actin network, which is used to calculate the network area A. Scale bar is
10 mm. c, Graph showing surface drive and cantilever response signal as a
function of time for a 5 Hz measurement (colours are as in a). Note the
cantilever response is damped with respect to the drive signal indicating
compression of the network. This technique has the effect of applying a
sinusoidal stress on the network where hydrodynamic coupling was found to
be negligible (see Supplementary Information B). d, Stress and strain graph
calculated from measurement in c showing stress (black) and strain (red) as a
function of time (see Methods).
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Figure 2 | Frequency dependence of elastic (filled triangles, E9) and viscous
(open triangles, E99) moduli. The traces were constructed by averaging
normalized data from 11 separate experiments and 21 different frequency
sweeps. Each measurement of the elastic and viscous moduli was normalized
by the average elastic modulus at 5 Hz taken before and after the
measurement (see Supplementary Information C). The best-fit power-law
exponent for E9(f) was determined to be x 5 0.13 (dotted line), and the
average elastic modulus at 5 Hz was 985 6 655 Pa (mean 6 s.d.), which are
consistent with previous studies on cells. In addition to the power-law
behaviour, the viscous modulus has a similar shape to those seen previously.
Error bars on both curves are normalized s.d.
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Figure 22: A typical stress-strain profile, taken with 5 Hz forcing frequency. Figure
taken from Chaudhuri, Parekh, and Fletcher, Nature, 445, 295–298, 2007.

The frequency can be varied by adjusting the movement of the surface. For each frequency, the
storage and loss moduli can be measured. The result is shown in Fig. 23. At low frequency, the
loss modulus does not depend on frequency, but at higher frequency it grows with frequency. The
storage modulus shows power law behavior, E′ ∼ νa, where ν is the frequency and a is the power
law exponent. The maximum likelihood estimate15 puts the value of the exponent a to be about 0.13.
Many cellular materials behave in this way, and I emphasize again that the molecular details of how
this comes about are not immediately obvious nor ascertainable in this experiment. Materials are
often described by the power law behavior of the storage modulus and by plots such as these, and
they are useful for comparison.

at 5 Hz, is similar to the elastic modulus measured on various cell
types19–22 and in a previous reconstitution of actin-based motility23.
Dendritic actin network elasticity is significantly higher than the
elasticity of actin networks reconstituted in solution containing the
Arp2/3 complex (,1 Pa), though differences in concentration and
components could account for this disparity24,25. The average elasti-
city of the actin networks studied here was found to be independent
of prestressing by myosin II motors (see Supplementary Information
D).

To understand further the mechanical properties of growing dend-
ritic actin networks, we probed the stress dependence of the elastic
modulus5,7 (see Methods). A typical experiment is shown in Fig. 3a
(black trace) where stress was increased on the network incremen-
tally, and the elasticity at each value of applied stress was measured.
For stresses up to ,15 Pa the elasticity remained constant, indicating
a linear elastic regime. Then the elasticity increased with stress in a
stress-stiffening regime, as has been seen previously4–6, for stresses up
to a critical stress, sc < 270 Pa. Above the critical stress, we found that
the elasticity of the network gradually decreased with stress in a
stress-softening regime.

Stress softening has been previously explained by network rupture
or crosslinker rearrangement. In rigidly crosslinked actin networks,
stress softening has been attributed to the fracture of extended fila-
ments or crosslinking/branch points at sc, after which elasticity dras-
tically decreased4–6. Alternatively, softening was proposed to occur as
a result of the unbinding of flexible crosslinkers above sc, which
either remain unbound or re-bind to form crosslinks at different
positions7. For either of these explanations, stress softening would
reflect permanent alterations in the network that would lead to irre-
versibility in the elasticity of the network. That is, higher elasticities
could not be recovered by reducing network loading from stresses
above sc (refs 4–7). However, in dendritic actin networks, the stress-

softening behaviour was reversible: the elasticity measured as the
stress was reduced to sc matched the elasticity seen for increasing
stress (Fig. 3a, red trace). This was seen in all experiments (Fig. 3b), so
stress softening in the dendritic actin network must arise from a
reversible mechanism.

A plausible explanation for reversible stress softening is through
elastic buckling of individual filaments under compression. A popu-
lation of filaments in the dendritic network, based on their length and
orientation, will begin to buckle at a threshold stress. Upon buckling,
these filaments are infinitely compliant while still supporting Fb (ref.
12). As a result, the number of load-bearing elements decreases for
higher stresses, resulting in a decrease in the effective stiffness of the
network. As the stress is increased, more filaments buckle, reducing
the elasticity of the network further. Because filaments are assembled
into an interconnected dendritic network, buckled filaments do
not collapse completely, and they can unbuckle when the force is
reduced, making the process of buckling reversible with load.
Stress softening has been predicted from simulations of athermal
crosslinked actin networks to occur as a result of filament buckling
and also in an elastic element model of the cytoskeleton26,27, although
such models do not predict stress stiffening before softening.
Interestingly, reversible elastic buckling of component elements is
observed under high compressional forces in some types of foams28.
Electron micrographs have shown the actin cytoskeleton ultrastruc-
ture to exhibit similarities with open lattice foams, so that this buck-
ling behaviour might be expected3.

Buckling of individual filaments can occur at forces consistent
with the observed stress softening, based on a simple calculation.
Using published electron micrographs of dendritic actin networks
reconstituted in vitro in a similar biochemical system, we estimate
filament lengths Lc to be 0.1–1 mm (ref. 17). We calculate an expected
buckling force Fb of 0.5–50 pN per filament using these lengths and
assuming Euler buckling, although the behaviour in a constrained
environment can lead to higher buckling forces29. In our experi-
ments, the average force per filament at sc (233 Pa, the mean value
from the inset of Fig. 3b), using an average filament spacing of 50–
100 nm (ref. 17), is calculated to be 0.45–2 pN, which lies within the
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Figure 1 | AFM-based microrheology of growing dendritic actin networks.
a, Cartoon illustrating the measurement geometry in which the surface is
driven sinusoidally (blue sinusoid and double-headed arrow), and the force
transmitted through the network (red mesh) is transduced by the cantilever
(pink sinusoid and double-headed arrow). b, Fluorescence micrograph of
the actin network, which is used to calculate the network area A. Scale bar is
10 mm. c, Graph showing surface drive and cantilever response signal as a
function of time for a 5 Hz measurement (colours are as in a). Note the
cantilever response is damped with respect to the drive signal indicating
compression of the network. This technique has the effect of applying a
sinusoidal stress on the network where hydrodynamic coupling was found to
be negligible (see Supplementary Information B). d, Stress and strain graph
calculated from measurement in c showing stress (black) and strain (red) as a
function of time (see Methods).
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Figure 2 | Frequency dependence of elastic (filled triangles, E9) and viscous
(open triangles, E99) moduli. The traces were constructed by averaging
normalized data from 11 separate experiments and 21 different frequency
sweeps. Each measurement of the elastic and viscous moduli was normalized
by the average elastic modulus at 5 Hz taken before and after the
measurement (see Supplementary Information C). The best-fit power-law
exponent for E9(f) was determined to be x 5 0.13 (dotted line), and the
average elastic modulus at 5 Hz was 985 6 655 Pa (mean 6 s.d.), which are
consistent with previous studies on cells. In addition to the power-law
behaviour, the viscous modulus has a similar shape to those seen previously.
Error bars on both curves are normalized s.d.
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Figure 23: The storage (filled symbols) and loss (open symbols) moduli measured for
various frequencies. The values are normalized to the average storage modulus at 5
Hz, which was approximately 985 Pa. Though not clearly stated in the paper, I believe
the imposed stress magnitude was about 2 Pa. Figure taken from Chaudhuri, Parekh,
and Fletcher, Nature, 445, 295–298, 2007.

The storage modulus of the actin network is about 103 Pa, which is similar to that observed for
cell cortices, as measured by pushing a large magnetic bead against the outside of a cell. Fabry et al.
(PRL, 87, 148102, 2001) found that the cortical storage modulus is about 103-104 Pa in human airway
smooth muscle cells.

15I am not actually sure this is a maximum likelihood estimate because the statistical procedures in
the paper were not detailed enough.
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While the frequency sweep gave a picture of the power law nature of the storagemodulus, Chaud-
hury and coworkers also did a sweep of imposed stress with the frequency fixed at 5 Hz. The results
are displayed in Fig. 24. At low stress, the observed moduli of the actin network did not change. At
these low stresses, compression will tend to straighten out the wiggles in the fibers, resulting in a pri-
marily entropic response, like the entropic springs we encountered when we studied polymer pulling.
As the applied stress grows, these fluctuations are already pulled out. Filaments running orthogonally
to the surface serve as struts, while those running parallel to the surface are stretched as the material
deforms. This strong resistance to stretching results in stress stiffening; the storage modulus grows
with applied stress. This happens above about 15 Pa. However, when the stress becomes very large,
close to 230 Pa, the filaments start to buckle, which can result in stress softening. The buckled fila-
ments can no longer push effectively against the surface, and the storage modulus gets smaller with
greater stress.

lower range of predicted buckling forces. We note that the buckling
instability is smoothed entropically for a semiflexible polymer at
finite temperature, so that individual polymers will undergo stress
softening as the compressional force approaches the Euler buckling
force. The overlap in the lower range of predicted buckling forces
with the range of calculated applied force per filament at sc supports
the idea that buckling explains stress softening, because sc represents
the threshold stress at which filament buckling dominates nonlinear
elasticity. As the stress is increased, up to 3sc in our experiments,
shorter filaments buckle, and the elasticity decreases further.

Our measurements of nonlinear elasticity in dendritic actin net-
works are consistent with a model in which a combination of com-
pression, bending and extension gives rise to network mechanical
properties (Fig. 4). As stress is initially applied to the network, the
elasticity increases as a result of entropic resistance to filament and
flexible crosslinker extension normal to the direction of compression,
in addition to possible effects from nonlinear compliance of the
Arp2/3 complex (Fig. 4a, b). As stress on the network is further
increased, filaments oriented in the direction of compression begin
to buckle, reducing the elasticity of the network at higher stresses
(Fig. 4c, d). Buckling occurs only after filaments have already been

supporting a load, so the enthalpic resistance of filaments to com-
pression is likely to play a significant role in the linear and stress-
stiffening regimes.

The difference in the elasticity of dendritic networks grown from
surfaces and crosslinked networks formed in solution can be
explained in part by the actin concentration in the network. The
modulus of elasticity is expected to scale as E0 < C

5=2
A (ref. 8) for

isotropically crosslinked actin networks, where CA is the concentra-
tion of actin in the network and the crosslinks are assumed to be rigid.
The concentration of actin in dendritic networks has been estimated
to be ,1 mM (ref. 30), whereas the concentration of networks
studied in vitro was of the order of ,10 mM (refs 24, 25), suggesting
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However, for semiflexible polymer networks, filament length can
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Figure 3 | Dendritic actin networks exhibit stress stiffening and reversible
stress softening. a, In a typical nonlinear elasticity measurement, the stress
on the network is first increased incrementally (black trace) to and then
decreased incrementally from a maximum stress (red trace) of ,600 Pa, with
the elasticity measured at each stress at 5 Hz. The elasticity remains constant
for stresses up to ,15 Pa and then increases in a stress-stiffening regime. For
stresses above the critical stress sc of ,270 Pa, the elasticity decreases in a
stress-softening regime that is reversible, as indicated by the overlay of the
black and red traces. b, Averaged and normalized trace of the nonlinear
elasticity of actin networks (see Supplementary Information A). Each

individual measurement was normalized by the difference between the
elasticity before the measurement Emin and the maximum elasticity for
increasing stresses Emax and sc. The results of 28 different measurements
from 12 separate experiments were averaged together (mean 6 s.d. shown)
and found to exhibit three distinct regimes of elasticity: linear, stress
stiffening and stress softening. The stress softening is shown to be reversible.
Note that the elasticity in b is shown on a linear scale while the elasticity in a is
shown on a log scale. The inset shows a histogram of sc for which the mean
value was 233 Pa.
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Figure 4 | Stress stiffening and stress softening can arise in dendritic
networks owing to filaments resisting extension and buckling of filaments
resisting compression. a, b, When the stress on the network (s, indicated by
black arrows) is increased from s 5 0, a population of filaments or
crosslinkers is stretched (as indicated by green arrows) as the material
expands laterally, and the resistance to extension of filaments increases
owing to entropic elasticity, leading to a stress-stiffening regime. c, However,
as the stress is increased above sc, some filaments resisting compression

buckle when the compressional force (green arrows) exceeds the Euler
buckling force. Buckled filaments exhibit infinite compliance, so they no
longer contribute to the elasticity, but they do not collapse because they have
connections with the network and thus still support the buckling force. d, As
the stress is further increased, more filaments buckle and the elasticity of the
network is decreased further, leading to the stress-softening regime. In
principle, this process is completely reversible because buckled filaments will
unbuckle once the stress is reduced.
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Figure 24: The storage modulus (averaged over many experiments) for a range of im-
posed stress magnitudes. The experiment starts with low stress and then ramps up
to the maximal imposed stress of about 600 Pa. The resulting storage modulus was
calculated through the stress sweep and is plotted in black. Then, the imposed stress
amplitudewas decreased, the storagemodulus calculated, and plotted in red. the stress
is normalized to the critical stress where stress softening starts to occur, around 230 Pa.
The inset shows a histogram of the observe critical imposed stress, σc. Figure taken
from Chaudhuri, Parekh, and Fletcher, Nature, 445, 295–298, 2007.

The red curve, going from high stress to low stress, does not overlap with the black curve, giving
an apparent hysteresis. This is likely due to the fact that this actin network is grown inXenopus extract
and is still dynamically changing during the course of the experiment. It can therefore experience
greater crosslinking and perhaps greater density as the experiment progresses.

Importantly, this simple experiment exposes some key features of actin networks.

• They are viscoelastic, with a strong elastic component at high frequencies.

• They exhibit strain stiffening and strain softening.

• They are dynamic.
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15.3 Microrheological studies of cytoplasmic viscoelasticity

Microrheology is a techniquewhereinmicron-sized tracer beads are injected into a possibly viscoelas-
tic material. The rheological properties of the material are ascertained by monitoring the motion of
the beads.

For example, imaginewe track the position of a beadmoving through a viscousmaterial. It should
diffuse via a random walk. From the track of the bead’s position over time we can compute a mean
square displacement, ⟨r2⟩. Since the imaging is typically done in two dimensions, the mean square
displacement is related to the diffusion coefficient as we have worked out previously in class,

⟨(r(t + τ )− r(t)) · (r(t + τ )− r(t))⟩ ≡ ⟨r2(τ )⟩ = 4Dτ . (15.9)

Then, if we plot the mean square displacement versus time and perform a regression, we can get a
value for the diffusion coefficientD. For a purely viscousmedium, we canwork out the viscosity from
the calculated D using the Stokes-Einstein-Sutherland relation,

D =
kBT

6π ηa , (15.10)

where a is the radius of the bead.

Conversely, if the bead were in a purely elastic medium and we tracked it, the mean square dis-
placement is independent of time,

⟨r2⟩ = kBT
K , (15.11)

where K is a spring constant related to the Young’s modulus E of the medium by K = 3πEa when
the Poisson ratio is zero.16

Toward this end, we introduce force spectrum microscopy
(FSM), an approach that probes the frequency dependence of
the aggregate, incoherent cytoplasmic forces within a cell. To
accomplish this, we combine independent measurements of
the intracellular fluctuating movement of injected particles with
measurements of the mechanics of the cytoplasm performed
with active microrheology using laser tweezers. With these
measurements, we determine the temporal spectrum of the
ensemble of the random, fluctuating forces, demonstrating that
this ubiquitous fluctuating motion in cells is not thermally
induced, but is instead a consequence of random forces. We
then exploit FSM to probe the intracellular micromechanical
behavior of malignant and benign cells, and show that cancer
cells exhibit a significantly enhanced level of forces, albeit with
the same frequency dependence, as predicted by our model.
Moreover, we show that these active forces strongly dominate
thermal Brownian forces in the cellular interior, impacting motion
of objects from nanometers to microns in scale, and providing a
fundamental mechanism for transport of objects of all scales.
Thus, FSM is a valuable new tool for characterizing the dynamic
state of a cell.

RESULTS

Random Intracellular Movement Appears Diffusive
Tomeasure the fluctuatingmotion in the cytoplasm of eukaryotic
cells, wemicroinjected submicron colloidal particles into A7mel-
anoma cells (Cunningham et al., 1992) and measured their time-
dependent motion with confocal microscopy. The particles were
rendered inert by attaching a short polyethylene-glycol (PEG)
brush layer to their surface to eliminate interactions with biopoly-
mers or proteins (Valentine et al., 2004). Moreover, because they
were microinjected, the particles were not surrounded by a lipid
membrane. Unlike smaller tracers that travel freely through the
cytoskeletal network, the injected submicron particles were
larger than the typical cytoskeletal mesh size, which is about

50 nm (Luby-Phelps, 2000; Luby-Phelps et al., 1987). Thus, their
motion reflects the fluctuations of the cytoplasm itself. To avoid
cell-boundary effects, we imaged particles that are greater than
!1 mm deep within the cell; we also imaged particles away from
both the thin lamellar region and the nucleus to avoid any inter-
actions with the mechanically distinct cell cortex and nucleus
(Extended Results). Particle centers were determined in each im-
age with an accuracy of 22 nm. We tracked their trajectories and
calculated the time- and ensemble-averaged mean-square
displacement (MSD), < Dr2(t) >, where Dr(t) = r(t+t)-r(t).
At shorter timescales (t % 0.1 s), the MSD of the probe parti-

cles was nearly constant in time; however, the fluctuations
were always at least five times larger than the noise floor. At
longer timescales (t R 0.1 s), the MSD increased approximately
linearly with time, as shown in Figure 1 and Figure S1, available
online. Particles of different size, d, exhibited a similar time
dependence, as shown in Figure 1B. Moreover, the amplitude
of the fluctuations scaled as 1/d, as shown in Figure 1C; this is
consistent with motion in the continuum viscoelastic environ-
ment of the cytoplasm (Hoffman et al., 2006). Such motion is
often interpreted as thermal Brownian motion (Baker et al.,
2010; del Alamo et al., 2008; Gupton et al., 2005; Hale et al.,
2009; Wu et al., 2012; Yamada et al., 2000). However, a MSD
that increases linearly with time is only consistent with Brownian
motion in a purely viscous liquid and at thermal equilibrium,
neither of which applies to the cytoplasm (Brangwynne et al.,
2008a; Bursac et al., 2005; Hoffman et al., 2006; MacKintosh,
2012; Wilhelm, 2008). As the cytoplasm is neither a pure viscous
liquid or at thermal equilibrium, we concluded that the observed
cytoplasmic fluctuations must derive from some other sources
other than thermal-based diffusion.

Cytoplasmic Diffusive-like Movement Results from
Active Processes
To clarify the active character of the cytoplasmic fluctuating
motion, we examined the effect of inhibiting myosin II activity
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Figure 1. Movements of Microinjected
Tracer Particles in Living Cells
(A) Bright-field image of anA7 cellwithmicroinjected

200-nm-diameter fluorescence particles (green) and

2min trajectories (black) superimposedontop.PEG-

coated particles are microinjected into cells grown

on collagen-I-coated, glass-bottom dishes. Particle

trajectories in the cytoplasm look very similar to

thermal Brownian motion. Scale bar, 5 mm.

(B) Two-dimensional ensemble-averaged mean-

square displacement (MSD) < Dr2(t) > of PEG-

coated tracer particles of various sizes are plotted

against lag time on a log-log scale, in living A7

cells. Red, green, and blue symbols and lines

represent particles that are 100, 200, and 500 nm

in diameter, respectively. Dashed lines indicate a

logarithmic slope of 1. Measurements are done

with more than 200 tracer particles in about 25

individual cells for each particle size.

(C) Ensemble-averaged MSD scaled with particle

diameter, in untreated (solid symbols), blebbistatin

treated (open symbols), and ATP-depleted (solid

lines) A7 cells.

See also Figure S1 and Movie S1.
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Figure 25: Mean squared displacement of passively tracked beads injected into A7
melanoma cells. Figure taken from Guo, et al., Cell, 158, 822–832, 2014.

So, if we inject beads into a viscoelastic medium, we might expect elastic-like behavior on short
time scales and viscous-like behavior on long time scales. We would then get ⟨r2(τ )⟩ ≈ constant for
small τ . For large τ , we expect ⟨r2(τ )⟩ ∼ τ . This kind of experiment has been done many times.
Shown in Fig. 25 are results of injecting passive beads of different diameter into A7 melanoma cells.
At short times, the mean square displacement curve is flat, transitioning to a slope of unity at time

16This result comes from a generalization of the Stokes relation that we will not go through here.

70



scales beyond one second. The gap between the curves is commensuratewith the diffusion coefficient
varying like d−1, where d is the diameter of the bead. We can read the diffusion coefficients from the
plot, with D ≈ 2.5 × 10−3 μm2/s for the 500 nm beads. Using the Stokes-Einstein Sutherland
relation, this gives a viscosity of η ≈ 0.4 Pa-s, about two and a half orders of magnitudemore viscous
than water. This is a value typically reported for cytoplasmic viscosity. But please read the next section!

15.3.1 The cytoplasm is neither viscous nor passive

This interpretation of the experiment is wrong! At least it is wrong for the cytoplasm of these
cells, which have active forces in them due to motor protein activity, polymerization, etc. Guo and
coworkers performed the same experiment in the same cell types treated with blebbistatin, which
inhibits myosin activity. As shown in Fig. 26, the mean square displacement curves shift rightward,
showing inhibited motion. Inhibiting myosin may change the structure of the cytoplasm by changing
the crosslinking of filaments, so we may expect to see a shift in the dynamics. Guo and coworkers
went step further and depleted ATP using sodium azide and 2-deoxyglucose. The result is the solid
lines in Fig. 26. The beads barely move at all in the absence of ATP. Together, these results imply the
active forces, driven by energy consuming processes in the cell are moving the beads. The movement
of the beads is not by thermal diffusion, so the Stokes-Einstein-Sutherland relation is cannot be validly
applied to this experiment.
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linearly with time, as shown in Figure 1 and Figure S1, available
online. Particles of different size, d, exhibited a similar time
dependence, as shown in Figure 1B. Moreover, the amplitude
of the fluctuations scaled as 1/d, as shown in Figure 1C; this is
consistent with motion in the continuum viscoelastic environ-
ment of the cytoplasm (Hoffman et al., 2006). Such motion is
often interpreted as thermal Brownian motion (Baker et al.,
2010; del Alamo et al., 2008; Gupton et al., 2005; Hale et al.,
2009; Wu et al., 2012; Yamada et al., 2000). However, a MSD
that increases linearly with time is only consistent with Brownian
motion in a purely viscous liquid and at thermal equilibrium,
neither of which applies to the cytoplasm (Brangwynne et al.,
2008a; Bursac et al., 2005; Hoffman et al., 2006; MacKintosh,
2012; Wilhelm, 2008). As the cytoplasm is neither a pure viscous
liquid or at thermal equilibrium, we concluded that the observed
cytoplasmic fluctuations must derive from some other sources
other than thermal-based diffusion.

Cytoplasmic Diffusive-like Movement Results from
Active Processes
To clarify the active character of the cytoplasmic fluctuating
motion, we examined the effect of inhibiting myosin II activity

A B

C

Figure 1. Movements of Microinjected
Tracer Particles in Living Cells
(A) Bright-field image of anA7 cellwithmicroinjected

200-nm-diameter fluorescence particles (green) and

2min trajectories (black) superimposedontop.PEG-

coated particles are microinjected into cells grown

on collagen-I-coated, glass-bottom dishes. Particle

trajectories in the cytoplasm look very similar to

thermal Brownian motion. Scale bar, 5 mm.

(B) Two-dimensional ensemble-averaged mean-

square displacement (MSD) < Dr2(t) > of PEG-

coated tracer particles of various sizes are plotted

against lag time on a log-log scale, in living A7

cells. Red, green, and blue symbols and lines

represent particles that are 100, 200, and 500 nm

in diameter, respectively. Dashed lines indicate a

logarithmic slope of 1. Measurements are done

with more than 200 tracer particles in about 25

individual cells for each particle size.

(C) Ensemble-averaged MSD scaled with particle

diameter, in untreated (solid symbols), blebbistatin

treated (open symbols), and ATP-depleted (solid

lines) A7 cells.

See also Figure S1 and Movie S1.

Cell 158, 822–832, August 14, 2014 ª2014 Elsevier Inc. 823

Toward this end, we introduce force spectrum microscopy
(FSM), an approach that probes the frequency dependence of
the aggregate, incoherent cytoplasmic forces within a cell. To
accomplish this, we combine independent measurements of
the intracellular fluctuating movement of injected particles with
measurements of the mechanics of the cytoplasm performed
with active microrheology using laser tweezers. With these
measurements, we determine the temporal spectrum of the
ensemble of the random, fluctuating forces, demonstrating that
this ubiquitous fluctuating motion in cells is not thermally
induced, but is instead a consequence of random forces. We
then exploit FSM to probe the intracellular micromechanical
behavior of malignant and benign cells, and show that cancer
cells exhibit a significantly enhanced level of forces, albeit with
the same frequency dependence, as predicted by our model.
Moreover, we show that these active forces strongly dominate
thermal Brownian forces in the cellular interior, impacting motion
of objects from nanometers to microns in scale, and providing a
fundamental mechanism for transport of objects of all scales.
Thus, FSM is a valuable new tool for characterizing the dynamic
state of a cell.

RESULTS

Random Intracellular Movement Appears Diffusive
Tomeasure the fluctuatingmotion in the cytoplasm of eukaryotic
cells, wemicroinjected submicron colloidal particles into A7mel-
anoma cells (Cunningham et al., 1992) and measured their time-
dependent motion with confocal microscopy. The particles were
rendered inert by attaching a short polyethylene-glycol (PEG)
brush layer to their surface to eliminate interactions with biopoly-
mers or proteins (Valentine et al., 2004). Moreover, because they
were microinjected, the particles were not surrounded by a lipid
membrane. Unlike smaller tracers that travel freely through the
cytoskeletal network, the injected submicron particles were
larger than the typical cytoskeletal mesh size, which is about

50 nm (Luby-Phelps, 2000; Luby-Phelps et al., 1987). Thus, their
motion reflects the fluctuations of the cytoplasm itself. To avoid
cell-boundary effects, we imaged particles that are greater than
!1 mm deep within the cell; we also imaged particles away from
both the thin lamellar region and the nucleus to avoid any inter-
actions with the mechanically distinct cell cortex and nucleus
(Extended Results). Particle centers were determined in each im-
age with an accuracy of 22 nm. We tracked their trajectories and
calculated the time- and ensemble-averaged mean-square
displacement (MSD), < Dr2(t) >, where Dr(t) = r(t+t)-r(t).
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motion in a purely viscous liquid and at thermal equilibrium,
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2012; Wilhelm, 2008). As the cytoplasm is neither a pure viscous
liquid or at thermal equilibrium, we concluded that the observed
cytoplasmic fluctuations must derive from some other sources
other than thermal-based diffusion.
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Figure 26: Mean squared displacement of passively tracked beads injected into A7
melanoma cells, including cells treated with blebbistatin (open symbols) and with ATP
depleting agents sodium axide and 2-deoxyglucose (solid lines). Red, green, and blue
symbols respectively are for beads of 100, 200, and 500 nm in diameter. The mean
squared displacement if multiplied by the diameters to collapse the curves. Figure
taken from Guo, et al., Cell, 158, 822–832, 2014.

15.3.2 Active microrheology

In the experiments we have just describe, the tracer beads are allowed to passively move around the
cytoplasm. By “passive,” Imean that the experimenter is not exerting a force on the bead. The beads,
as we have just argued, are being actively moved around by nonequilibrium processes in the cell, but
the technique is called passive microrheology when the experimenter does not move the bead.
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in cells. Myosin II is a nonprocessive motor protein that binds to
actin filaments and undergoes a power stroke upon ATP hydro-
lysis (Howard, 2001). We treated cells with 10 mM blebbistatin,
which inhibits myosin II motor activity. After inhibition, we
observed a marked decrease in the MSD of injected particles
in the diffusive-like regime (tR 0.1 s), while the shorter timescale
movement remained essentially unchanged. When we inhibited
general motor and polymerization activity by depleting cells of
ATP using 2 mM sodium azide and 10 mM 2-deoxyglucose,
theMSD became nearly time independent over our experimental
timescales (Figure 1C; Figure S1A; Movie S1). Thus, the motion
of the particles is driven by active, ATP-dependent processes.
Such active behavior is not limited to the cytoplasm or to eukary-
otic cells; ATP-dependent random fluctuating motion has
also been observed in prokaryotic cells and yeast (Parry et al.,
2014; Weber et al., 2012).

To account for this active behavior, we adapted recent theo-
retical work suggesting that diffusive motion in the cytoskeleton
can arise from random motor activity (Lau et al., 2003; MacKin-
tosh and Levine, 2008): In a filamentous actin network, acto-
myosin contractile forces exerted by myosin II motors can drive
fluctuating deformations. These myosin motors do not act indi-
vidually but form aggregates, or minifilaments, which bind
to the actin network and act as ‘‘disordered muscle fibers,’’
applying random contractile forces in the network (Koenderink
et al., 2009). These forces can result in random fluctuations of
the network, similar to that observed in reconstituted networks
(Brangwynne et al., 2008b; Mizuno et al., 2009; Mizuno et al.,
2007). However, the theoretical framework of actively driven
fluctuations requires a network to be nearly elastic, rather than
viscous, to account for the diffusive-like motion observed for t
R 0.1 s. Thus, a direct measure of the intracellular mechanics
is essential to ascertain whether the observed particle motion
is due to thermal or active effects (MacKintosh, 2012).

The Cytoplasm Is a Weak Elastic Solid
To directly measure the micromechanical properties of the cyto-
plasm, we performed active microrheology measurements using
optical tweezers to impose a sinusoidal oscillation as a function

of frequency, y, on a 500-nm-diameter probe particle within a
cell. The trap stiffness was 0.05 pN/nm as determined using
the equipartition theorem to describe Brownian motion of a
bead trapped in water (Veigel et al., 1998). By measuring the
resultant displacement of the bead, x(y), subjected to an applied
sinusoidal trap oscillation with a force F at frequency y, we ex-
tracted the effective spring constant, K(y) = F(y)/x(y), for the intra-
cellular environment (Guo et al., 2013; Mizuno et al., 2007). The
complex shear modulus G = G’+iG’’ is related to the spring con-
stant through a generalization of the Stokes relation K = 3pGd.
Thus, we can determine the full frequency-dependent modulus
of the cytoplasm.
Our active measurements yielded a resultant displacement

that was almost in phase with the applied force; therefore, the
micromechanical response of A7 cells was predominantly elastic
rather than viscous (Figure 2). Consistent with this, themeasured
elastic modulusG’was significantly larger than the loss modulus
G’’ over the frequency range from 0.3 to 70 Hz (Figure S2). The
elastic modulus follows a power-law form, jG(y)j!yb, with b
z0.15, in agreement with other measurements (Fabry et al.,
2001; Guo et al., 2013). We also noted that the measured cyto-
plasmic modulus is approximately 1 Pa (Figure S2), much lower
than that measured on the actin cortex (Fabry et al., 2001); pre-
sumably this reflects the denser crosslinked actin structure in the
cell cortex, whereas the beads probe the cytoplasm which is
much more dilute and hence lower in elasticity. Thus, our twee-
zers measurements confirmed that the cytoplasm is an elastic
solid across the measured timescales.

Model of Diffusive-like Motion in a Nearly
Elastic Medium
The motion of tracer particles directly reflects the fluctuations
driven by random motor activity throughout the cell. This pro-
vides a basis for an assay that characterizes the average effect
of all motor forces; this cannot be done with any other existing
technique. To develop this assay, a quantitative description of
the random fluctuating motion is required. To do this, we adop-
ted the fundamental force-displacement relationship of any me-
dium, Hooke’s law, f = Kx, where f and x are the driving force and
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Figure 2. Optical-Tweezer Active Micro-
rheology Measurement Shows that the
Cytoplasm Is a Weak Elastic Gel
(A) Schematic showing the experimental setup

used to measure the intracellular mechanics.

(B) Typical displacements of the trapped bead and

the optical trap oscillating at 1 Hz.

(C) Effective spring constant K0 of the intracellular

environment measured directly with active micro-

rheology using optical tweezers shows that the

intracellular elastic stiffness (solid symbols) domi-

natesover thedissipative resistance (opensymbols).

Blue circles, gray squares, and light gray triangles

represent untreated, 10 mM blebbistatin-treated,

and ATP-depleted A7, respectively. Both the

blebbistatin treatment and ATP depletion reduce

the cytoplasmic stiffness by about 2-fold. Error

bars represent standard deviation (n = 15). The

corresponding shear moduli of the cytoplasm are

shown in Figure S2. See also Figures S2 and S3A.
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Figure 27: A) Schematic for a cytoplasmic active microrheology experiment using
an optical trap and tracer particles. B) Trap and bead displacement from oscillatory
forcing of the bead at 1 Hz frequency. Figure taken from Guo, et al., Cell, 158, 822–
832, 2014.

An alternative approach is tomechanicallymove the tracer particleswithin the cell. Optical traps,
schematically shown in Fig. 27A, provide a great way to do this. The trap can be calibrated so that
the force, and therefore stress, exerted can be deduced from the trap displacement and bead position.
The bead position can also be used to infer the displacement of the surrounding cytoplasm, giving the
stress-strain relationship. We can then infer the storage and loss modulus from these measurements.
From the plot in Fig. 27B, we see that the bead position moves closely with the trap, implying that
the cytoplasm is predominantly elastic. The result for A7 cells under various treatment conditions
is shown in Fig. 28. The elastic modulus is dominant, and shows a power law with E′ ∼ ν 0.15,
in agreement with the results found with reconstituted actin networks we discussed earlier in this
lecture.
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Figure S2. Mechanical Properties of the Cytoplasm Measured by Optical-Tweezer Acitve Microrheology in A7 Cells, Related to Figure 2
The frequency-dependent elastic and viscousmoduli are extracted via the Stokes relationK = 3pGd, if a homogenerous intracellular material is assumed, whereK

is directly calculated by measuring the resultant displacement x of the bead in the trap oscillation, as f/x, as plotted in Figure 2. The cytoplasm shows pre-

dominantly elastic behavior (G’ > G’’) for the untreated cells (blue circles), blebbistatin treated cells (gray squares), and ATP depleted cells (light gray triangles).

Blebbistatin treatment and ATP depletion reduces both the cytoplasmic G’ and G’’ about 50 percent, as compared to the untreated cells.
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Figure 28: Frequency-dependent storage (G′) and loss (G′′) moduli in A7 cells under
various treatments. Figure taken from Guo, et al., Cell, 158, 822–832, 2014.

Note that the storage modulus of the cytoplasm in these cells is of order 1 Pa, in contrast to a
storage modulus of about 1000 Pa for the actin network. The cortex is much more dense with actin
than the cytoplasm, but the cytoplasm nonetheless can behave like an elastic gel, albeit a must less
stiff one.

viscoelasticity aremeasured, the spectrum of the average fluctu-
ating force due to these motors, which drives this motion, can be
directly determined, through < f2(y) > = jK(y)j2 < x2(y) >. This pro-
vides a new tool for characterizing the frequency-dependent
spectrum of the average force, which is due to the aggregate,
yet random effects of all active processes in the cell. While these
forces are inherently time-dependent, it is more convenient to
describe their frequency-dependent spectrum. We call this
new assay Force Spectrum Microscopy (FSM), as summarized
schematically in Figure 3B.

To demonstrate the applicability of FSM, we quantified the
average aggregate cytoplasmic forces due to active processes
in A7 cells. The resultant force spectrum exhibited two distinct
frequency regimes, as shown by the red data in Figure 4A: In
the low-frequency range, corresponding to timescales t R
0.1 s, < f2(y) > is proportional to y!2; by contrast, in the high-fre-
quency range, corresponding to t% 0.1 s, < f2(y) > has a weaker
frequency dependency. These observations are consistent with
a low-frequency regime dominated by active forces and a high-
frequency regime dominated by thermal forces (Brangwynne
et al., 2008a; Lau et al., 2003;MacKintosh and Levine, 2008;Miz-
uno et al., 2007). Moreover, based on our model, we estimate
that a density of myosin filaments of "1/mm3, each generating
a force of order 10 pN, can account for the observed force spec-
trum (see details in Extended Results). This is the first experi-
mental assessment of this important global measurement of
the overall enzymatic activity in the cell.

To further establish the applicability of FSM in quantifying
active forces in the cell, we suppressed the level of actin-based
cytoskeletal forces by inhibiting myosin II motors through the
addition of 10 mM blebbistatin to the cell culture medium. As a
result, the low-frequency, active component of the force spec-
trum was suppressed, although the same overall y-2 dependence
remained, as shown by the blue data in Figure 4A. Furthermore,
when we depleted cells of ATP through addition of 2 mM sodium
azide and 10mM2-deoxyglucose, we observed a force spectrum

that is consistent with purely thermal fluctuations over the full fre-
quency range for the viscoelasticy medium measured directly for
these cells, as shown by the black data in Figure 4A. This sug-
gested that, while actomyosin contractions are a significant
source of intracellular forces, other enzymatic activities also
contribute to the forces and hence the motion experienced by
intracellular objects. Moreover, above 10 Hz, the force spectra
measured in all cases had the same time dependence and nearly
the same amplitudes, consistent with a common thermal origin
of the motion in this regime (Figure 4A). These results demon-
strate the ability of FSM to quantify the degree of motor activity
in a cell and to distinguish these active forces from thermal forces.
To further explore the utility and sensitivity of FSM, we

increased the cytoplasmic stiffness by applying osmotic stress
to compress cells (Zhou et al., 2009). We observe a marked
reduction in the amplitude of particle fluctuations, although the
frequency dependence remains unchanged, reflecting the con-
sequences of the increased cytoplasmic stiffness (Figure S3).
Surprisingly, however, when the force spectrum was calculated,
we found that the amplitude of intracellular forces did not
change, at least within the range of osmotic pressures applied
(see details in Extended Results).

FSM Reveals Differences in the Intracellular Forces
within Benign and Malignant Cells
Since FSMprobes the consequences of the aggregate forces due
to active processes in the cell, it can be used to directly quantify
changes in intracellular activity and the dynamic state of the
cytoplasm in response to changes in conditions such as drug
treatment, external stimuli, or even the disease state of a cell.
To illustrate this, we compared the force spectrum of malignant
and benign cells. Malignant cells exhibit reduced cell stiffness
(Cross et al., 2007; Plodinec et al., 2013) and increased traction
forces (Kraning-Rush et al., 2012), which may provide potential
biophysical markers for metastatic progression. Using FSM, we
compared the force spectrum in benign (MCF-10A) to that in
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Figure 4. Ensemble Aggregate Intracellular
Force Spectrum Probed by FSM
(A) Cytoplasmic force spectrum calculated from

spontaneous fluctuations of tracer particles and

the active microrheology measurement, through

< f2(y) > = jK(y)j2 < x2(y) >, inside control untreated

(red), myosin II inhibited (blue) and ATP-depleted

(black) A7 cells. For comparison, theoretical pre-
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1/mm3 density of myosin II filaments applying a force
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reduction of myosin motor activity by 10 mM bleb-

bistatin (Kovács et al., 2004), and the black solid line

corresponds to no active motors. The yellow dash

dotted line represents the theoretical prediction

of only active contributions and excludes thermal effects. Dashed lines indicate logarithmic slopes of!0.85 and !2. Vertical bars represent standard error (n = 15).

(B) Comparison of force spectra probed by FSM in untreated A7 cells, using the spontaneous fluctuations of injected tracer particles (red dotted line, same as

that in Figure 4A), endogenous vesicles and protein complexes (black circle), and mitochondria (blue triangle). The spring constant is measured by active

microrheology with probe particles, as shown in Figure 2. The force spectrum measured with vesicles and protein complexes is in excellent accord with that

measured for probe particles. The force spectrum for mitochondria exhibits the same frequency dependence as that for probe particles, but is larger in

amplitude; this is consistent with mitochondria are also occasionally directly transported by specific motors within the cell.
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Figure 29: Frequency-dependent mean square forces for in A7 cells under various
treatments. Figure taken from Guo, et al., Cell, 158, 822–832, 2014.

The active microrehology enables determination of the elastic properties of the cytoplasm, from
which forces present on passive beads may be inferred. The forces are directional and stochastic, and
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on average cancel out (at least for an isotropic cytoplasm). We therefore need to compute the mean
square force. Specifically, ⟨(F(ν ))2⟩ = |K(ν )|2⟨r2(ν )⟩, where ν is the frequency of forcing. Since
we can know the spring constant K from the active microrheological experiments (K = 3πE′d), we
can track passive beads to infer forces. The result is show in Fig. 29. For small frequency, we get a
mean square force that scales like ν−2, consistent with movement of the bead due to active forces
within the cytoplasm. For high frequencies, that is at faster time scales than active forces can be
exerted, the force has weaker dependence on frequency, indicative of thermal fluctuations rattling a
bead in an elastic cage.
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16 Linear viscoelasticity

While the storage and loss moduli are experimentally determined, we do not have a generic model for
how a material responds to stress. This is where the theory of linear viscoelasticity is useful. We
will explore this idea first through example and then sharpen what linear viscoelasticity is.

16.1 The Maxwell model

Imaginewehave amaterial that is both solid-like andfluid-like. Iwill write down a constitutive relation
and then show that thematerial is solid like on short time scales (high frequency) and fluid like on long
time scales (low frequency). The constitutive relation is

σ + τM σ̇ = η ε̇ . (16.1)

Here, τM = η/E is theMaxwell time. Let us now perform the experiment where we exert a periodic
stress on this material. We take σ (t) = σ0 sin ωt. Then, we have

σ0(sin ωt + τM ω cos ωt) = η ε̇ . (16.2)

As a result, we have

ε̇ =
σ0

η (sin ωt + τM ω cos ωt). (16.3)

We can integrate this ODE to get

ε = σ0

(
−cos ωt

η ω +
sin ωt

E

)
+ C, (16.4)

where C is an integration constant. If we take ε (0) = 0, then C = σ0/η ω , giving

ε = σ0

(
−cos ωt

η ω +
sin ωt

E

)
+

σ0

η ω (16.5)

We can rearrange our expression for the strain by multiplying both sides by E to get

Eε = − σ0

τM ω cos ωt + σ0 sin ωt + σ0

τM ω . (16.6)

Now, if ω τM ≫ 1, i.e., for high frequencies, the first and last terms are negligible and we have

Eε = σ0 sin ωt = σ , (16.7)

which is the constitutive relation for an elastic solid. For low frequencies, the second term is negligible
and we have

Eε = − σ0

τM ω cos ωt + σ0

τM ω (16.8)

so

ε̇ =
σ0

η sin ωt = σ/η , (16.9)

which is the constitutive relation for a viscous fluid. So, the material with this constitutive relation is
elastic on short time scales and viscous on long time scales.
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16.2 The creep function

Instead of investigating how the material responds to an oscillatory stress, imagine we instead sud-
denly impose a stress σ0 upon the material. So, we have

σ (t) = σ0 θ (t), (16.10)

where θ (t) is the Heaviside step function.

We will now compute the strain response to a step in stress for a Maxwell material. Inserting the
imposed stress into the constitutive relation (16.1), and noting that the time derivative of a Heaviside
function is a Dirac delta function, we have

σ0 θ (t) + σ0 τM δ (t) = η ε̇ . (16.11)

We can solve this differential equation by integrating.

ε =

∫ t

−∞
dt′
(

σ0

η θ (t′) + σ0

E δ (t′)
)

=
σ0

η tθ (t) + σ0

E θ (t) (16.12)

=
σ0

E

(
1 +

t
τM

)
θ (t).

In general, we can write the response to a step in stress as

ε (t) = σ0J(t)θ (t), (16.13)

where J(t) is called the creep function. For a Maxwell material,

J(t) = E−1(1 + t/τM). (16.14)

We note that for t ≫ τM, J(t), and therefore also ε (t), diverge. So, for long times, a Maxwell
material behaves like a fluidwith J(t) ≈ η−1t and ε (t) ≈ σ0 η−1t, so that ε̇ ≈ σ0/η , the constitutive
relation for a viscous fluid.

Similarly, for t ≪ τM, J(t) = E−1, so that ε = σ0/E. the constitutive relation for an elastic
solid.

16.3 The creep function and linear superposition

The principle of linear superposition states that for any linear operator L, if Lf i = gi, then

L

(∑
i

f i

)
=
∑

i
gi. (16.15)

In linear viscoelasticity theory, the constitutive relations are all of the form

Lε = g(σ , σ̇ , σ̈ , . . .). (16.16)

For example, for a Maxwell material, we can define the linear operator

L = η d
dt , and g(σ , σ̇ ) = σ + τM σ̇ . (16.17)
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We looked at the creep function for a single step in stress. Now, let’s say we take two steps in
stress. For concreteness, the stress prior to the first step is stress is σinit, and the magnitude of the
steps, which happen at time t0 and t1, are Δσ0 and Δσ1.

σ (t) = σinit + Δσ0 θ (t − t0) + Δσ1 θ (t − t1). (16.18)

We can directly apply the superposition principle to get the response in terms of the creep function
for the single step.

ε (t) = σinitJ(t) + Δσ0J(t − t0)θ (t − t0) + Δσ1J(t − t1)θ (t − t1). (16.19)

If we extend this to many steps, we have, again by superposition,

ε (t) = σinitJ(t) +
∑

i
Δσ i J(t − ti)θ (t − ti). (16.20)

This result is useful for interpreting experiments where more than one step in stress are taken.

We can consider the case of infinitessimal steps, which is what we would get with smoothly vary-
ing stress. Defining Δti = ti − ti−1, we have,∑

i
Δσi θ (t − ti) =

∑
i

Δti
Δσi
Δ ti

θ (t − ti) ≈
∫ t

0
dt′ dσ (t′)

dt′ , (16.21)

where we have arbitrarily taken t0 = 0. Thus, we have

ε (t) = σinitJ(t) +
∫ t

0
dt′ J(t − t′) σ̇ (t). (16.22)

Thus, we see that for any applied stress, we may use the known creep function to compute the strain
by evaluating an integral. We can perform integration by parts to get

ε (t) = σinitJ(t) + (J(t − t′)σ (t′))|t0 −
∫ t

0
dt′ dJ(t − t′)

dt′ σ (t′)

= J(0)σ (t) +
∫ t

0
dt′ σ (t′) dJ(t − t′)

d(t − t′) , (16.23)

an alternative and sometimes more convenient expression.

We can use this expression to derive the response of a Maxwell material to oscillatory forcing.
We take σ (t) = σ0 sin ωt. For a Maxwell material, J(0) = E−1 and dJ/dt = η−1. We consider the
case where we start the oscillation from rest at t = 0. Then,

ε (t) = σ0

E sin ωt + σ0

η

∫ t

0
dt′ sin ωt′ = σ0

E sin ωt − σ0

η ω cos ωt + σ0

η ω . (16.24)

This expression is valid for positive times. For negative times, ε = 0. This is the same expression
we got in section 16.1.

16.4 Storage and loss moduli for a Maxwell material

To compute the storage and loss moduli, we subject a material to oscillatory stress and write the
response in terms of the amplitude and phase shift using the constitutive relation. We already worked
out the result two different ways.

ε (t) = − σ0

η ω cos ωt + σ0

E sin ωt + σ0

η ω . (16.25)
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To compute the storage and loss moduli, we need to write the strain in the form

ε (t) = ε̄ + ε0 sin(ωt − δ ). (16.26)

We use the trigonometric identity that

a sin x + b cos x =
√

a2 + b2 sin(x + δ ), (16.27)

with tan δ =
b
a . (16.28)

This gives

ε (t) = σ0

η ω + σ0

√
(η ω )−2 + E−2 sin(ωt − δ ), ; (16.29)

tan δ =
E

η ω =
1

τM ω . (16.30)

Note that

(η ω )−2 + E−2 =
1

E2

(
1 +

(
E

η ω

)2
)

=
1 + tan2 δ

E2 . (16.31)

Then, we have

ε (t) = σ0

η ω +
σ0

E
(
1 + tan2 δ

)
sin(ωt − δ ). (16.32)

We introduce another trigonometric identity, tan2 x = sec2 x − 1, to get

ε (t) = σ0

η ω +
σ0

E cos δ sin(ωt − δ ). (16.33)

From this expression, we see that

cos δ =
σ0

ε0E . (16.34)

So, the storage modulus is

E′ =
σ0

ε0
cos δ =

σ 2
0

Eε 2
0
. (16.35)

From equation (16.29), we have

ε0 = σ0

√
(η ω )−2 + E−2, (16.36)

so

E′ =
1

E ((η ω )−2 + E−2)
=

E(η ω )2

E2 + (η ω )2 = E (τM ω )2

1 + (τM ω )2 . (16.37)

To find the loss modulus, we note that

sin δ = tan δ cos δ =
E

η ω
σ0

ε0E =
σ0

ε0 η ω . (16.38)
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Then, the loss modulus is

E′′ =
σ 2

0
ε 2

0 η ω
=

1
η ω ((η ω )−2 + E−2)

=
E2 η ω

E2 + (η ω )2 = E τM ω
1 + (τM ω )2 . (16.39)

A plot of the storage and loss moduli as a function of the oscillation frequency ω is shown in Fig. 30.
The storage modulus asymptotes to the Young’s modulus at high frequency. At low frequency, the
loss modulus is given by η ω .

0 1 10
τMω

0

1

E ′/E

E ′′/E

Figure 30: The storage and loss moduli (scaled by the Young’s modulus of the
elastic element) for a Maxwell material as a function of frequency.

16.5 Elastic and viscous elements

We can think of the Maxwell model diagrammatically as an elastic element in series with a viscous
element, as show in Fig. 31. When a constant stress is applied to the ends of the diagram, the elastic
spring responds instantly, while the viscous damper gradually releases this stress.

m

1

E

m

1

⌘

Figure 31: Diagram of a Maxwell material.

We could derive the constitutive relation from the diagram. The stress is the same throughout
the diagram, but the strains add. We can consider the stress and strain on each element, where the
subscript e denotes elastic and v denotes viscous.

σ = σe = σv (16.40)

ε = εe + εv. (16.41)
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We also have the familiar constitutive relation for individual elements.

σe = Eε (16.42)

σv = η ε̇ . (16.43)

To derive the constitutive relation for theMaxwell material, we differentiate the above strain equation
(16.41) with respect to time.

ε̇ = ε̇e + ε̇v. (16.44)

Using the constitutive relations for the individual elements, we then have

ε̇ =
σ̇e
E +

σv
η . (16.45)

But σ = σe = σv, so we have

ε̇ =
σ̇
E +

σ
η . (16.46)

Multiplying both sides by η gives the constitutive relation for a Maxwell material.

σ + τM σ̇ = η ε̇ . (16.47)

We can construct other models from diagrams. The main idea is:

1) For elements in series, strains add and stresses are equal.

2) For elements in parallel, stresses add and strains are equal.

Linear viscoelasticity involves connecting these elements together taking the familiar linear constitu-
tive relations for each element.

16.6 The Kelvin-Voigt solid

Now, instead of considering the elastic and viscous elements in series, consider them in parallel, as
in Fig. 32. This is called the Kelvin-Voigt model. We can derive the constitutive relation using the
samemethod aswe just did for theMaxwellmodel. Because the elements are in parallel, their stresses
add and the strains are equal.

m

1

m

1

E

⌘

Figure 32: Diagram of a Kelvin-Voigt solid.

σ = σe + σv = Eε + η ε̇ . (16.48)
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That was simple enough! We can now compute the creep function of a Kelvin-Voigt solid.

η ε̇ + Eε = σ0 θ (t). (16.49)

We solve this by integrating factor.

ε (t) = σ0

E

(
1 − e−t/ τM

)
θ (t), (16.50)

giving a creep function of

J(t) = E−1
(

1 − e−t/ τM
)
. (16.51)

So, for t ≫ τM, J(t) → E−1, giving ε = σ0/E, the constitutive relation for an elastic solid. For
t ≪ τM,

J(t) ≈ 1
E (1 − (1 − t/τM)) = t/η , (16.52)

which we saw before is the creep function for a viscous fluid. So, for a Kelvin-Voigt solid, deformation
is initially resisted by viscous (frictional) dissipation until thematerial is eventually stretched as a solid.
Contrast this with a Maxwell material, which is liquid in the long time limit.

16.7 Jeffreys fluid

A Jeffreys fluid is a good linear viscoelastic description of cells and their cortices. It consists of a
Kelvin-Voigt element in series with a viscous element. As a result, at long time scales, the viscous
element dominates the dynamics and thematerial behaves like a viscous fluid. This is commonly seen
in cells at very long time scales, since the actin network have time to turn over and be reconstructed,
thereby giving liquid-like behavior. At very short times, frictional losses resist deformation as the
actin filaments slide against one another. At intermediate times, the cell responds elastically as the
intact filaments are compressed and stretched.

Cell cortices also consume energy and exert stress on themselves via activity of myosin motors.
This is called active stress. We therefore add an active stress element in parallel with the Jeffreys
fluid to model the active stresses exerted by the fluid. The resulting diagram is shown in Fig. 33.
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Figure 33: Diagram of an active Jeffreys fluid.

Towork out the constitutive relation, we recall our rules: elements in series have additive strains
and equal stresses and elements in series have additive stresses and equal strains. Thus, we have

σ = σa + σJ (16.53)

σJ = σKV = σv (16.54)
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ε = εKV + εv. (16.55)

Using the constitutive relation for Kelvin-Voigt and a viscous element, we have

σJ = EεKV + ζ ε̇KV = η ε̇v = σv (16.56)

Now, differentiating equation (16.55), we have

ε̇ = ε̇KV + ε̇v = ε̇KV +
σJ

η , (16.57)

where we have used the constitutive relation for a viscous element in the last equality. We can differ-
entiate again and rearrange to get

ε̈KV = ε̈ − σ̇J

η . (16.58)

Differentiating the constitutive relation for the a Kelvin-Voigt element, we have

σ̇J = Eε̇KV + ζ ε̈KV. (16.59)

We have from ε̇KV from equation (16.57) and for ε̈KV from (16.58), which gives

σ̇J = E
(

ε̇ − σJ

η

)
+ ζ

(
ε̈ − σ̇J

η

)
. (16.60)

This can be rearranged to give

σJ + τ1 σ̇J = η ( ε̇ + τ2 ε̈ ), (16.61)

with τ1 = (η + ζ )/E and τ2 = ζ/E. We have σJ = σ − σa, which gives

σ − σa + τ1( σ̇ − σ̇a) = η ( ε̇ + τ2 ε̈ ), (16.62)

the constitutive relation for an active Jeffreys fluid. In the homework, you will compute the creep
function and the storage and loss moduli for this material, a commonly used model for cells.
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