
BE/APh 161: Physical Biology of the Cell, Winter 2023
Homework #1

Due 2:30 PM, January 18, 2023.

© 2023 Justin Bois. The problem statements are licensed under a Creative Commons Attribution
License CC-BY 4.0.

Note from JB:This problem set is largely about estimation. You should be able to do these estimates
on a cocktail napkin. Please try to complete this homework without the use of a calculator or com-
puter for calculations. You may refer to any of the material in PBoC2, but avoid BioNumbers or Cell
Biology by the Numbers or any other sources unless explicitly asked to. Remember that we’re just es-
timating, so π is about 3, etc. Be sure to comment on what parts of your estimates are most suspect
and why. After you come upwith your estimates, youmay look them up at BioNumbers or elsewhere.
And of course, try to have fun!

Problem 1.1 (Exploring biology with numbers, 10 pts).
Spend some time on the BioNumbers website (http://www.bionumbers.org/), looking at var-
ious numbers. Pick two that are particularly interesting to you, give their BNIDs, and write a few
sentences about why you find each one interesting.

Problem 1.2 (Cellular eating and drinking, 12 pts).
When growing up bacteria, we typically put a small number of bacterial cells in growth media, and
the components of that solution are converted into more cells. (Think about that for a second. From
a clear liquid solution, life makes life. After experience this profound moment of wonder, continue
reading the problem statement.) E. coli can divide every twenty minutes under very good growth
conditions.

a) Estimate the rate at which a growing E. coli cell drinks with a division time of twenty minutes.
By “drinking” I mean estimate the number of water molecules that need to be imported into
the cell per second to maintain the level of growth.

b) The growth media typically contains glucose as a carbon source. Estimate how much carbon
is necessary to build the materials of a new cell (which is done in 20 minutes under very good
conditions). Based on this estimate, at what rate must the bacterium “eat” glucose? It is also
interesting to consider that there are about 1000 transmembrane proteins that transport suger
in an E. coli cell. At what rate must sugar molecules come through each of these transmem-
brane proteins? For this estimate, we are considering only the carbon necessary to build the
cellular material; we are completely neglecting the energy needed to build the cell.

Problem 1.3 (HIV estimates, problem 2.8 of PBoC2, 12 pts).

a) Estimate the total mass of an HIV virion by comparing its volume with that of an E. coli cell
and assuming they have the same density.

b) The HIV maturation process involves proteolytic clipping of the Gag polyprotein so that the
capsid protein CA can form the shell surrounding the RNA genome and nucleocapsidNC can
complex with the RNA itself. Using Figures 2.30 and 2.31 from PBoC2 to obtain the capsid
dimensions, estimate the number ofCAproteins that are used tomake the capsid and compare
your result with the total number of Gag proteins.
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Problem 1.4 (Concentrations and spacing, 30 pts).
Use your skills of estimation to answer the following questions. Comment on the numbers you come
up with.

a) Many biochemical studies in test tubes use nanomolar (nM) concentrations of purified pro-
teins. If a protein species inside of an E. coli cell has concentration of 1 nM, how many total
molecules of that species are there in the cell?

b) What is the typical intercell distance between E. coli cells in a saturated LB growth medium?
Hint: According to BNID 104943, the saturation concentration in LB is 20.5 g/L.

c) It is estimated that there are of order 1030 prokaryotic cells on Earth (BNID ID 104960, see
also the beautiful paper by Whitman, et al.). Roughly 10% of these are in the open ocean.
Give a rough estimate for the concentration of bacteria in sea water. What is the approximate
intercell spacing? For fun: If all the bacteria in the sea were lined up end-to-end, how long
would the line be?

d) There are approximately 0.2 kg of bacteria in your large intestine. What is their intercell spac-
ing?

e) Approximately how many hydronium ions are in an E. coli cell?

Problem 1.5 (Regeneration cost, 12 pts).
Sender and Milo (Nat. Med., 2021) estimated that about 300 billion cells per day turn over (meaning
300 billion are lost and 300 billion are made each day) in a human body, with about 90% of the cells
turning over being red blood cells. Estimate the daily energy requirement for this task as a fraction of
the total energy budget of the body. Hint: Reading section 5.1.2 of PBoC2 will help with this estimate.

Problem 1.6 (Tools of the model-building trade, 24 pts).
In lecture, we mathematized a cartoon of flagellar growth and length control into differential equa-
tions. When we did so, we did not have particular physical principles in mind beyond keeping track
of where the tubulin monomers are. (The physical principle here is conservation of mass.) We will
learn about physical laws from statistical mechanics and continuum mechanics (and perhaps more)
to build models, but for now, we will proceed to name a few useful tools for building models and put
them to use.

a) The law of mass action is a very widely applicable rule in model building for cell biological
systems. It states that the rate at which a chemical reaction proceeds is proportional to the
product of the concentrations of the reactants. For example, for the reaction A + B −−→ C,
the rate of the reaction is kcAcB, where ci is the concentration of species i and the constant of
proportionality k is referred to as a rate constant. If this is the only reaction happening, we can
write a pair of differential equations describing the dynamics of the concentrations of species
A and B.

dcA

dt =
dcB

dt = −kcAcB. (1.1)

Now, consider a more complex system of reactions that we might encounter when studying
enzyme kinetics. Imagine that an enzyme E can bind reversibly to substrate S. That statement
describes two reactions, S + E −−→ ES and ES −−→ S + E. (We typically write these reac-
tions in one expression as S + E −−⇀↽−− ES.) Define the rate constants for these two equations
respectively as k+ and k−. Once the enzyme binds, it can convert the substrate to product
in the reaction ES −−→ P + E. Let the rate constant for this reaction be k2. Use the law
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of mass action to write down a system, of differential equations for the concentrations of the
respective species, S, E, ES, and P.

b) Another ubiquitous tool is aTaylor series expansion. When we do not know how one quan-
tity depends on another, we often approximate it with a Taylor series. For example, we know
that the force exerted by a spring is a function of the displacement of the spring end of the
spring. That is, F = F(x), x is the displacement. We don’t know what F(x) is, but if we
expand it in a Taylor series, we can have an approximate expression for F(x), at least for values
of x close to the value we expanded about. So, we can write

F(x) = F0 + F′(x = x0) (x − x0) +
1
2

F′′(x = x0)(x − x0)
2 + . . . . (1.2)

If we take x0 to be the position where the force vanishes such that F0 = 0, and we set our
coordinate axes such that x0 = 0, we get

F(x) = F′(x = 0) x +
1
2

F′′(x = 0)x2 + . . . . (1.3)

If we define k = F′(x = 0) and keep terms to only linear order, we get

F(x) ≈ k x, (1.4)

which is Hooke’s law. The coefficient k in the Taylor series is a phenomenological parameter,
in this case the spring constant.

Now, consider bacterial growth. We expect the rate of growth of bacteria to be a function
of the number of bacteria present. If we have more bacteria, they are all dividing, leading to a
faster increase in the number of total bacteria. However, if there are too many bacteria, their
high density results in fouling of the media, so growth will slow down. The rate of change
of bacterial concentration is dc/dt, where c is the concentration of bacteria. Write down an
expression for dc/dt by expanding it as a function of c to second order. You should get two
phenomenological parameters, the growth rate, k, which has dimension of inverse time, and
the carrying capacity, K, which has dimension of concentration and specifies the maximum
concentration of bacteria before they stop growing. (Youmay need tomanipulate the resulting
expression a bit to identify these parameters.)

c) In many ways, probability is the mathematical language of biology. We will discuss this in
depthwhenwe introduce the tools of statisticalmechanics. Butmany processes do not involve
different energies for different states, sowe do not need themachinery of statisticalmechanics
to model them. Rather, we can employ a coin toss, or a Bernoulli trial. A Bernoulli trial is
an experiment or event that has two outcomes that can be encoded as success and failure (or
heads/tails or true/false or 1/0 or . . .). We will define the probability of success of a Bernoulli
trail as p. The probably of failure is therefore 1 − p.

As an example, imagine that I have a collection of cells that can be in one of two states.
In a given environment, a cell has probability p of being in state A and probability 1 − p of
being in state B. We can use the idea of Bernoulli trials to work out the probability P(nA; n)
that nA out of a total of n cells are in state A. Here, “success” is a given cell being in state A
and “failure” is a given cell being in state B.

Now, say we have a bacterium that has n plasmids in it right before dividing. Write down
a probability mass function for the number of plasmids its respective daughter cells get. That
is, write down an expression for P(nA), the probability that daughter cell A gets nA plasmids.
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